“Traditional” treatment of quantum noise

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Optics of GW detectors Jo van den Brand
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
Various ways to beat the Standard Quantum Limit Yanbei Chen California Institute of Technology.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
G R DC Readout for Advanced LIGO P Fritschel LSC meeting Hannover, 21 August 2003.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
Finesse Update + Noise Propagation-Simulation Tutorial AEI, Hannover Andreas Freise University of Birmingham.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Displacement calibration techniques for the LIGO detectors Evan Goetz (University of Michigan)‏ for the LIGO Scientific Collaboration April 2008 APS meeting.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Advanced LIGO Sensing and Control Readout schemes for Advanced LIGO K.A. Strain University of Glasgow G & G
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
LIGO-G R Quantum Noise in Gravitational Wave Interferometers Nergis Mavalvala PAC 12, MIT June 2002 Present status and future plans.
Some Ideas About a Vacuum Squeezer A.Giazotto INFN-Pisa.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
G R Interferometer Sensing & Control P Fritschel 8 Oct 02.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
Opening our eyes to QND technical issues (workshop and open forum) “It’ll be the blind leading the blind” - Stan Whitcomb “You can see a lot by looking”
LIGO-G D Advanced LIGO Systems & Interferometer Sensing & Control (ISC) Peter Fritschel, LIGO MIT PAC 12 Meeting, 27 June 2002.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Advanced Gravitational-wave Detector Technologies
H1 Squeezing Experiment: the path to an Advanced Squeezer
Interferometer configurations for Gravitational Wave Detectors
Squeezing in Gravitational Wave Detectors
Quantum noise reduction using squeezed states in LIGO
The US Laser Interferometer Gravitational-wave Observatory
Overview of quantum noise suppression techniques
The Quantum Limit and Beyond in Gravitational Wave Detectors
Progress toward squeeze injection in Enhanced LIGO
Nergis Mavalvala Aspen January 2005
MIT Corbitt, Goda, Innerhofer, Mikhailov, Ottaway, Pelc, Wipf Caltech
Generation of squeezed states using radiation pressure effects
Homodyne readout of an interferometer with Signal Recycling
Quantum Noise in Advanced Gravitational Wave Interferometers
Quantum Noise in Gravitational Wave Interferometers
Quantum Noise in Gravitational-wave Detectors
Heterodyne Readout for Advanced LIGO
Quantum effects in Gravitational-wave Interferometers
Nergis Mavalvala Aspen February 2004
Homodyne or heterodyne Readout for Advanced LIGO?
Gravitational-wave Detection with Interferometers
Gravitational-wave Detection with Interferometers
Australia-Italy Workshop October 2005
Gravitational-wave Detection with Interferometers
Quantum Optics and Macroscopic Quantum Measurement
Squeezed states in GW interferometers
Heterodyne Readout for Advanced LIGO
Nergis Mavalvala MIT December 2004
Quantum noise of white light cavity using double-gain medium
Squeezed Input Interferometer
Squeezed Light Techniques for Gravitational Wave Detection
RF readout scheme to overcome the SQL
Advanced Optical Sensing
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

“Traditional” treatment of quantum noise Shot Noise Uncertainty in number of photons detected a (Tunable) interferometer response  Tifo depends on light storage time of GW signal in the interferometer Radiation Pressure Noise Photons impart momentum to cavity mirrors Fluctuations in the number of photons a Shot noise and radiation pressure noise uncorrelated  optimal Pbs for a given Tifo Shot noise: Laser light is Poisson distributed  sigma_N = sqrt(N) dE dt >= hbar  d(N hbar omega) >= hbar  dN dphi >= 1 Radiation Pressure noise: Pressure fluctuations are anti-correlated between cavities

The quantum calculation DC strain sensitivity Buonanno and Chen (PRD 2001) In signal tuned interferometer shot noise and radiation pressure (back action) noise are correlated Optical field (which was carrying mirror displacement information) returns to the arm cavity  radiation pressure force depends on test mass motion Quantized quadrature fields (quantum treatment not necessary when input at SRM is vacuum, can use classical amplitude/phase fluctuations) Use commutation relations for creation and annhilation operators, correlated two-photon modes

Homodyne (DC) readout z0 = homodyne phase k = coupling constant (ISQL, I0, W, g) F, f = GW sideband, carrier phase gain in SR cavity = GW sideband phase gain in arm cavity r, t = SRM reflection, transmission coefficient Cij, M, D1,2 = f(r, f, F, k, b)

Heterodyne (RF) readout fD = RF demodulation phase D+,- = (complex) amplitude of upper, lower RF sideband

Preliminary result (not yet correct?) h(f) (1/rtHz) frequency (Hz)

No crossings  no frequency dependent optimal demod phase frequency (Hz) h(f) (1/rtHz)