Future use of microwave observations in support of Cryosat Authors - C. Ruiz, E. Jeansou NOVELTIS, France - J.D. Flach, K. Partington VEXCEL UK, United.

Slides:



Advertisements
Similar presentations
NCAS Atmospheric Measurement Summer School, September 2010 Page 1/12 Deriving useful information from satellite data (a remote sensing application) Satellite.
Advertisements

Scattering from Hydrometeors: Clouds, Snow, Rain
CONICAL ELECTROMAGNETIC WAVES DIFFRACTION FROM SASTRUGI TYPE SURFACES OF LAYERED SNOW DUNES ON GREENLAND ICE SHEETS IN PASSIVE MICROWAVE REMOTE SENSING.
Cloud Radar in Space: CloudSat While TRMM has been a successful precipitation radar, its dBZ minimum detectable signal does not allow views of light.
Radiative Transfer Dr. X-Pol Microwave Remote Sensing INEL 6669
Extension and application of an AMSR global land parameter data record for ecosystem studies Jinyang Du, John S. Kimball, Lucas A. Jones, Youngwook Kim,
A thermodynamic model for estimating sea and lake ice thickness with optical satellite data Student presentation for GGS656 Sanmei Li April 17, 2012.
David Prado Oct Antarctic Sea Ice: John N. Rayner and David A. Howarth 1979.
Equation for the microwave backscatter cross section of aggregate snowflakes using the Self-Similar Rayleigh- Gans Approximation Robin Hogan ECMWF and.
MICROWAVE RAINFALL RETRIEVALS AND VALIDATIONS R.M. GAIROLA, S. POHREL & A.K. VARMA OSD/MOG SAC/ISRO AHMEDABAD.
SEAT Traverse The Satellite Era Accumulation Traverse (SEAT) collected near-surface firn cores and Ultra High Frequency (UHF) Frequency Modulated.
ElectroScience Lab Remote Sensing of Ice Sheet Subsurface Temperatures Mustafa Aksoy, Joel T. Johnson, and Kenneth C. Jezek* Department of Electrical and.
Near Surface Soil Moisture Estimating using Satellite Data Researcher: Dleen Al- Shrafany Supervisors : Dr.Dawei Han Dr.Miguel Rico-Ramirez.
Atmospheric phase correction for ALMA Alison Stirling John Richer Richard Hills University of Cambridge Mark Holdaway NRAO Tucson.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Surface Skin Temperatures Observed from IR and Microwave Satellite Measurements Catherine Prigent, CNRS, LERMA, Observatoire de Paris, France Filipe Aires,
Millimeter and sub-millimeter observations for Earth cloud hunting Catherine Prigent, LERMA, Observatoire de Paris.
Improving Borehole Optical Stratigraphy (BOS) T.J. Fudge Ben Smith Ed Waddington.
Retrieval of thermal infrared cooling rates from EOS instruments Daniel Feldman Thursday IR meeting January 13, 2005.
Single Column Experiments with a Microwave Radiative Transfer Model Henning Wilker, Meteorological Institute of the University of Bonn (MIUB) Gisela Seuffert,
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
A new prototype AMSR-E SWE operational algorithm M. Tedesco The City College of New York, CUNY, NYC With contributions from : Chris Derksen, Jouni Pulliainen,
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
On the Retrieval of Accumulation Rates on the Ice Sheets Using SAR On the Retrieval of Accumulation Rates on the Ice Sheets Using SAR Wolfgang Dierking.
On Estimation of Surface Soil Moisture from SAR Jiancheng Shi Institute for Computational Earth System Science University of California, Santa Barbara.
Applications of Bayesian sensitivity and uncertainty analysis to the statistical analysis of computer simulators for carbon dynamics Marc Kennedy Clive.
Ny-Ålesund Seminars, October Black carbon (BC) belongs to what is generally termed Short Lived Climate Forcers (SLCF). This means that the.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Center for Satellite Applications.
Recent advances for the inversion of the particulate backscattering coefficient at different wavelengths H. Loisel, C. Jamet, and D. Dessailly.
Princeton University Development of Improved Forward Models for Retrievals of Snow Properties Eric. F. Wood, Princeton University Dennis. P. Lettenmaier,
SMOS+ STORM Evolution Kick-off Meeting, 2 April 2014 SOLab work description Zabolotskikh E., Kudryavtsev V.
Retrieving Snowpack Properties From Land Surface Microwave Emissivities Based on Artificial Neural Network Techniques Narges Shahroudi William Rossow NOAA-CREST.
Pang-Wei Liu 1, Roger De Roo 2, Anthony England 2,3, Jasmeet Judge 1 1. Center for Remote Sensing, Agri. and Bio. Engineering, U. of Florida 2. Atmosphere,
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
- Microwave Remote Sensing Group IGARSS 2011, July 23-29, Vancouver, Canada 1 M. Brogioni 1, S. Pettinato 1, E. Santi 1, S. Paloscia 1, P. Pampaloni 1,
William Crosson, Ashutosh Limaye, Charles Laymon National Space Science and Technology Center Huntsville, Alabama, USA Soil Moisture Retrievals Using C-
A Simple Model of the Mm-wave Scattering Parameters of Randomly Oriented Aggregates of Finite Cylindrical Ice Hydrometeors : An End-Run Around the Snow.
5. Accumulation Rate Over Antarctica The combination of the space-borne passive microwave brightness temperature dataset and the AVHRR surface temperature.
DMRT-ML Studies on Remote Sensing of Ice Sheet Subsurface Temperatures Mustafa Aksoy and Joel T. Johnson 02/25/2014.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote SEnsing Training A project of NASA Applied Sciences Pawan Gupta Satellite.
SEA ICE RADAR ALTIMETER SIGNATURE MODELLING EXPERIMENTS CONTACT: RASMUS TONBOE (1) SØREN ANDESEN (1) LEIF TOUDAL PEDERSEN (2) (1) Danish Meteorological.
University of Kansas S. Gogineni, P. Kanagaratnam, R. Parthasarathy, V. Ramasami & D. Braaten The University of Kansas Wideband Radars for Mapping of Near.
On Estimation of Soil Moisture with SAR Jiancheng Shi ICESS University of California, Santa Barbara.
A review on different methodologies employed in current SWE products from spaceborne passive microwave observations Nastaran Saberi, Richard Kelly Interdisciplinary.
Improvement of Cold Season Land Precipitation Retrievals Through The Use of Field Campaign Data and High Frequency Microwave Radiative Transfer Model IPWG.
PRICING A FINANCIAL INSTRUMENT TO GUARANTEE THE ACCURACY OF A WEATHER FORECAST Harvey Stern and Shoni S. Dawkins (Bureau of Meteorology, Australia)
Ice-Phase Precipitation Remote Sensing Using Combined Passive and Active Microwave Observations Benjamin T. Johnson UMBC/JCET & NASA/GSFC (Code 613.1)
1 Volatile Exchange on Mars Maria T. Zuber MIT David E. Smith NASA/GSFC 16 th International Workshop on Laser Ranging Poznan, Poland 13 October 2008 NASA/MRO/HiRISE.
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 1. Scattering Phase Function Xiong Liu, 1 Mike Newchurch, 1,2 Robert Loughman.
Challenges and Strategies for Combined Active/Passive Precipitation Retrievals S. Joseph Munchak 1, W. S. Olson 1,2, M. Grecu 1,3 1: NASA Goddard Space.
Validation of Satellite-derived Clear-sky Atmospheric Temperature Inversions in the Arctic Yinghui Liu 1, Jeffrey R. Key 2, Axel Schweiger 3, Jennifer.
Inverse Modeling of Surface Carbon Fluxes Please read Peters et al (2007) and Explore the CarbonTracker website.
A Combined Radar-Radiometer Approach to Estimate Rain Rate Profile and Underlying Surface Wind Speed over the Ocean Shannon Brown and Christopher Ruf University.
SeaWiFS Views Equatorial Pacific Waves Gene Feldman NASA Goddard Space Flight Center, Lab. For Hydrospheric Processes, This.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
Chapter 14 Introduction to Regression Analysis. Objectives Regression Analysis Uses of Regression Analysis Method of Least Squares Difference between.
UWBRAD Modeling Summary KCJ Version 1 Please update and improve.
Statistics 350 Lecture 2. Today Last Day: Section Today: Section 1.6 Homework #1: Chapter 1 Problems (page 33-38): 2, 5, 6, 7, 22, 26, 33, 34,
Simulations of the snow covered sea ice surface and microwave effective temperature Rasmus T. Tonboe, Gorm Dybkjær, Jacob L. Høyer EU FP6 Damocles, EU.
Passive Microwave Remote Sensing
HSAF Soil Moisture Training
SOLab work description
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
(L, C and X) and Full-polarization
Development and Evaluation of a Forward Snow Microwave Emission Model
Improved Forward Models for Retrievals of Snow Properties
Fabien Carminati, Stefano Migliorini, & Bruce Ingleby
Presentation transcript:

Future use of microwave observations in support of Cryosat Authors - C. Ruiz, E. Jeansou NOVELTIS, France - J.D. Flach, K. Partington VEXCEL UK, United Kingdom - M. Drinkwater ESA-ESTEC, The Netherlands -F. Rémy, LEGOS, France Abstract: Electromagnetic models are used as the basis for a least squares inversion technique to estimate the dry snow zone surface properties of the terrestrial ice sheets from active and passive microwave satellite data. Retrieved parameters include grain size, density, layer thickness and accumulation rate. The prime motivation is to provide information of direct value to the Cryosat altimeter mission. The derived parameters can be used to convert from elevation change to snow mass change. They can also be used to predict geophysical retracking errors in altimeter data and to estimate the resulting uncertainty in the altimeter elevation measurement. With this technique, snow accumulation rate can also be estimated using passive microwave data. These data can then be compared to historical ERS altimeter data in order to assess the impact of interannual variability in accumulation rate on the significance of rates of elevation change. The technique is in the preliminary stages of assessment but is demonstrated using ERS-2 altimeter data in conjunction with spatio-temporally co-located SSM/I and QSCAT data. It is planned to apply the technique ultimately to Cryosat. Funding ESA-ESTEC Contract 16556/02/NL/GS Acknowledgement To A. Bingham from JPL that kindly provided model code for the benefit of defining the inversion algorithms Conclusion and prospects: A technique has been developed for estimating the surface properties of the dry snow zones of the ice sheets based on microwave model inversion. The model inversion technique has potential value for assisting with future radar altimeter missions including Cryosat. The technique can provide an estimate of the geophysical error resulting from surface penetration of the radar and can be used to convert surface elevation changes into a mass change. It can also be used to estimate the uncertainty in elevation estimates as a function of location via a sensitivity analysis. A more extensive validation is required using in-situ data, profiles of grain radius and density.The technique might also benefit from improved modelling of the near surface variation of snow pack properties. Stratigraphy and microwave models The inversion procedure is based on simple Rayleigh scattering based microwave models combined with a model of the dry snow zone stratigraphy. The density profile is derived from a best fit to recent shallow ice core data from the NASA Program for Arctic Regional Assessment (PARCA) : The depth to which the relationship is linear, z L, and the slope dρ/dz are determined from the surface density, ρ 0, and the slope of the power curve. The grain radius profile is determined by assuming the cross-sectional area of a grain increases linearly with time. Assuming a mean annual layer of thickness D, the depth-dependent grain radius r(z) is given by: where r 0 is the mean grain radius at the surface and K is the grain growth rate (K 0 = mm 2.yr -1 and E=47 kJ.mol -1 ) Firn layer temperature is computed using conventional heat-conduction theory and a seasonal sinusoidal relationship of the form : where T m and T a are the mean annual temperature and seasonal amplitude respectively, ω is the frequency and φ the phase of the seasonal variation and k is the thermal diffusivity of snow. Greenland GC-NET Automatic Weather Station data was used to derive a simple relationship, similar to that observed by Benson (1962), to determine T m and T a from elevation and latitude of each site within the Greenland dry snow zone : where Stratigraphy model Microwave models To compute brightness temperature of a multi-layered ice sheet surface, Bingham and Drinkwater (2000) adapted the model of Burke (1979). where ( ) is the power reflection coefficient and T atm accounts for atmospheric effects. L j represents the one-way power loss factor across the j th layer and 0 the incidence angle. The power reflection coefficient and one-way power loss factor, for each layer of the snow-pack, are determined from the absorption and scattering coefficients, which are themselves determined from the dielectric constant (Ulaby et al., 1981), firn density, grain radius and temperature profiles. The total backscatter from dry firn is considered as the incoherent sum of the isotropic volume backscattering components from each layer within the firn pack. Rough surface scattering effects are neglected at air-firn and firn-firn boundaries, as the impedance mismatch between firn layers is small. Following the methodology developed in Drinkwater et al. (2001), the total backscatter at an incidence angle 0 is given by: Microwave emissivity model Microwave backscatter model where where is the incident-angle dependent volume backscatter, is the transmissivity between adjacent layers, L is the one-way loss factor. D is the layer thickness, k e is the extinction coefficient and is the refracted incidence angle. Inversion technique The inversion method works by forward-modelling brightness temperatures and backscatter coefficients for realistic ranges of input parameters, which include layer thickness, surface density and grain size. A set of simulations of backscatter coefficients is carried out for all SSM/I and QuikSCAT data channels and for different combinations of input parameters, through an entire year (July 1999-July 2000), thus providing sufficient data points to support a least squares inversion using the actual observations. The set of input parameters which minimizes the RMS error between the modelled and observed brightness temperature and backscatter coefficients is selected as the best estimate of the surface properties of the ice sheets. This inversion procedure is formalised as follows. For all i m, where m is the number of sets of input parameters used in the simulations, find the minimum value of T i 2, where: is the RMS error for model simulation i generated from the i th set of input parameters, where i m, with m being the number of sets of input parameters. is the observed brightness temperature or backscatter coefficient for the j th dataset, e.g. SSM/I 19 GHz V, where j n and for day t, where t 365, the number of days in the year and n is the number of data channels. is the observed mean brightness temperature or backscatter coefficient for the j th dataset over the year (1 t 365). is the modelled microwave brightness temperature or backscatter value generated from the i th set of input parameters for the j th dataset, = function (D i, r i, i ) is the modelled mean brightness temperature or backscatter coefficient for the j th dataset over the year (1 t 365). is an optional weighting that can be applied to the j th dataset (0 j 1). Inversion of surface parameter Derived 1999/2000 snow pack parameters from the inversion technique including (c) grain size, (d) annual layer thickness, (e) surface density and (f) annual accumulation for 1999/2000, as derived using SSM/I 19, 22 and 37 GHz vertically polarised channels, for the Greenland dry snow zone Simulation of altimeter elevation errors The inverted surface parameters are used to forward-model conventional (ERS-2) radar altimeter returns over the dry snow zone of Greenland. The altimeter waveform model used is a simplified version of the Féménias model developed by Rémy and Legrésy (1997). Altimeter waveform model output derived from the inverted Greenland surface parameters for Summit. The true surface elevation corresponds to the vertical line at 27.5 range gates. The measured surface elevation corresponds to the vertical line at 28.7 range gates. The elevation (retrack) error is therefore calculated from the difference multiplied by the range gate width.