Meiosis and Sexual Life Cycles

Slides:



Advertisements
Similar presentations
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: Hereditary Similarity and Variation Living organisms are distinguished.
Advertisements

Chapter 13 Overview: Hereditary Similarity and Variation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 13 Meiosis.
Chapter 13 Meiosis. What is Genetics? Genetics is the scientific study of heredity and variation Heredity is the transmission of traits from one generation.
What occurs during the phases of meiosis?
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
In eukaryotes, heritable information is passed to the next generation via processes that include meiosis plus fertilization.
Meiosis Production of gametes (hope you remember mitosis!) Boehm.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Overview: Variations on a Theme Living organisms are distinguished by their ability to reproduce their own kind Genetics is the scientific study of heredity.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Ch 13 – Meiosis and Sexual Life Cycles Living organisms are distinguished by their ability to reproduce their own kind Genetics = scientific study of heredity.
Chapter 13.  Living organisms are distinguished by their ability to reproduce their own kind.  Genetics: is the scientific study of heredity and variation.
Overview: Variations on a Theme Living organisms are distinguished by their ability to reproduce their own kind Genetics is the scientific study of heredity.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: Hereditary Similarity and Variation Living organisms – Are distinguished.
Chapter 13 Meiosis.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Meiosis Overview: Hereditary Similarity and Variation Living organisms – Are distinguished.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Inheritance of Genes Genes are the units of heredity Genes are segments of DNA.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Meiosis Chapter 13: Meiosis and Sexual Life Cycles.
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis CHAPTER 10.
Chapter 13 Meiosis and Sexual Life Cycles.
Overview: Variations on a Theme
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Overview: Variations on a Theme
Telophase I and Cytokinesis
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Chapter 15 The Eukaryotic Cell Cycle, Mitosis, & Meiosis continued
Overview: Variations on a Theme
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Hereditary Similarity and Variation
Meiosis and Sexual Life Cycles
Fig Figure 13.1 What accounts for family resemblance?
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Exam II Lectures and Text Pages
Meiosis and Sexual Life Cycles
S E X.
Overview: Variations on a Theme
Overview: Variations on a Theme
Meiosis and Sexual Life Cycles
Meiosis and the Sexual Life Cycle
Meiosis and Sexual Life Cycles
Meiosis and Sexual Life Cycles
Presentation transcript:

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles

Genetics- the scientific study of heredity and variation Living organisms are distinguished by their ability to reproduce their own kind Genetics- the scientific study of heredity and variation Heredity- the transmission of traits from one generation to the next Variation- differences in appearance that offspring show from parents and siblings Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Inheritance of Genes Genes- units of heredity, made up of segments of DNA Gametes (sperm and eggs) Locus- specific location of a gene on a chromosome DNA is packaged into chromosomes One set of chromosomes is inherited from each parent Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Asexual VS.Sexual Reproduction Asexual reproduction= one parent producing genetically identical offspring by mitosis In sexual reproduction, two parents give rise to offspring that have unique combinations of genes inherited from the two parents Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Chromosomes in Human Cells somatic cells (any cell other than a gamete) have 23 pairs of chromosomes A karyotype is an ordered display of the pairs of chromosomes from a cell The two chromosomes in each pair are called homologous chromosomes, or homologs Chromosomes in a homologous pair are the same length and carry genes controlling the same inherited characters Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

TECHNIQUE 5 µm Pair of homologous replicated chromosomes Centromere Fig. 13-3b TECHNIQUE 5 µm Pair of homologous replicated chromosomes Centromere Figure 13.3 Preparing a karyotype Sister chromatids Metaphase chromosome

sex chromosomes are called X and Y females= homologous pair of X chromosomes (XX) Males= one X and one Y chromosome The 22 pairs of chromosomes that do not determine sex are called autosomes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

homologous chromosomes= one chromosome from each parent The 46 chromosomes in a human somatic cell are two sets of 23: one from the mother and one from the father A diploid cell (2n) has two sets of chromosomes humans diploid number is 46 (2n = 46) Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Key Maternal set of chromosomes (n = 3) 2n = 6 Paternal set of Fig. 13-4 Key Maternal set of chromosomes (n = 3) 2n = 6 Paternal set of chromosomes (n = 3) Two sister chromatids of one replicated chromosome Figure 13.4 Describing chromosomes Centromere Two nonsister chromatids in a homologous pair Pair of homologous chromosomes (one from each set)

A gamete= single set of chromosomes, and is haploid (n) Humans haploid number is 23 (n = 23) Each set of 23 consists of 22 autosomes and a single sex chromosome In an unfertilized egg (ovum), the sex chromosome is X In a sperm cell, the sex chromosome may be either X or Y Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Behavior of Chromosome Sets in the Human Life Cycle Fertilization- union of gametes (the sperm and the egg) Fertilized egg= zygote and has one set of chromosomes from each parent The zygote produces somatic cells by mitosis and develops into an adult Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

At sexual maturity, the ovaries and testes produce haploid gametes Gametes are produced by meiosis. Meiosis results in one set of chromosomes in each gamete Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Multicellular diploid adults (2n = 46) Fig. 13-5 Key Haploid gametes (n = 23) Haploid (n) Egg (n) Diploid (2n) Sperm (n) MEIOSIS FERTILIZATION Figure 13.5 The human life cycle Ovary Testis Diploid zygote (2n = 46) Mitosis and development Multicellular diploid adults (2n = 46)

Meiosis reduces the number of chromosome sets from diploid to haploid Meiosis takes place in two sets of cell divisions, called meiosis I and meiosis II Results in four daughter cells, rather than the two daughter cells in mitosis Each daughter cell has only half as many chromosomes as the parent cell Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

The Stages of Meiosis Meiosis I= homologous chromosomes separate Meiosis I= produces two haploid daughter cells with replicated chromosomes Meiosis II= sister chromatids separate Meiosis II= produces four haploid daughter cells with unreplicated chromosomes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Figure 13.7 Overview of meiosis: how meiosis reduces chromosome number Interphase Homologous pair of chromosomes in diploid parent cell Chromosomes replicate Homologous pair of replicated chromosomes Sister chromatids Diploid cell with replicated chromosomes Figure 13.7 Overview of meiosis: how meiosis reduces chromosome number Meiosis I 1 Homologous chromosomes separate Haploid cells with replicated chromosomes Meiosis II 2 Sister chromatids separate Haploid cells with unreplicated chromosomes

Division in meiosis I occurs in four phases: – Prophase I – Metaphase I – Anaphase I – Telophase I and cytokinesis Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Prophase I occupies more than 90% of the time required for meiosis Chromosomes begin to condense In synapsis, homologous chromosomes loosely pair up, aligned gene by gene In crossing over, nonsister chromatids exchange DNA segments Each pair of chromosomes forms a tetrad, a group of four chromatids

tetrads line up at the metaphase plate Metaphase I tetrads line up at the metaphase plate Microtubules from the poles are attached to the kinetochore of the homologous chromosomes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

pairs of homologous chromosomes separate Anaphase I pairs of homologous chromosomes separate One chromosome moves toward each pole Sister chromatids remain attached at the centromere and move as one unit toward the pole Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Telophase I and Cytokinesis each half of the cell has a haploid set of chromosomes each chromosome still consists of two sister chromatids Cytokinesis forms two haploid daughter cells Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Division in meiosis II also occurs in four phases: – Prophase II – Metaphase II – Anaphase II – Telophase II and cytokinesis Meiosis II is very similar to mitosis Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Telophase II and Cytokinesis Fig. 13-8d Telophase II and Cytokinesis Prophase II Metaphase II Anaphase II Figure 13.8 The meiotic division of an animal cell Sister chromatids separate Haploid daughter cells forming

spindle apparatus forms Prophase II spindle apparatus forms chromosomes (each still composed of two chromatids) move toward the metaphase plate Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

sister chromatids are arranged at the metaphase plate Metaphase II sister chromatids are arranged at the metaphase plate Because of crossing over in meiosis I, the two sister chromatids of each chromosome are no longer genetically identical Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

sister chromatids separate Anaphase II sister chromatids separate sister chromatids of each chromosome now move as two newly individual chromosomes toward opposite poles Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Telophase II and Cytokinesis chromosomes arrive at opposite poles Nuclear envelope form, and the chromosomes begin decondensing Cytokinesis separates the cytoplasm At the end of meiosis, there are four daughter cells, each with a haploid set of unreplicated chromosomes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Mitosis VS. Meiosis Mitosis= cells that are identical to the parent cell (1 cell → 1 identical cell) Meiosis= reduces the number of chromosomes sets from two (diploid) to one (haploid), producing cells that differ genetically from each other and from the parent cell Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Replicated chromosome Fig. 13-9a MITOSIS MEIOSIS MEIOSIS I Parent cell Chiasma Chromosome replication Chromosome replication Prophase Prophase I Homologous chromosome pair 2n = 6 Replicated chromosome Metaphase Metaphase I Figure 13.9 A comparison of mitosis and meiosis in diploid cells Anaphase Telophase Anaphase I Telophase I Haploid n = 3 Daughter cells of meiosis I 2n 2n MEIOSIS II Daughter cells of mitosis n n n n Daughter cells of meiosis II

Figure 13.9 A comparison of mitosis and meiosis in diploid cells Fig. 13-9b SUMMARY Property Mitosis Meiosis DNA replication Occurs during interphase before mitosis begins Occurs during interphase before meiosis I begins Number of divisions One, including prophase, metaphase, anaphase, and telophase Two, each including prophase, metaphase, anaphase, and telophase Synapsis of homologous chromosomes Figure 13.9 A comparison of mitosis and meiosis in diploid cells Does not occur Occurs during prophase I along with crossing over between nonsister chromatids; resulting chiasmata hold pairs together due to sister chromatid cohesion Number of daughter cells and genetic composition Two, each diploid (2n) and genetically identical to the parent cell Four, each haploid (n), containing half as many chromosomes as the parent cell; genetically different from the parent cell and from each other Role in the animal body Enables multicellular adult to arise from zygote; produces cells for growth, repair, and, in some species, asexual reproduction Produces gametes; reduces number of chromosomes by half and introduces genetic variability among the gametes