COSMO-GM Rome, WG-2 Meeting, Sept. 5, 2011

Slides:



Advertisements
Similar presentations
Numerical methods III (Advection: the semi-Lagrangian technique)
Advertisements

Error Indicator based on the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA) Joanna Szmelter Piotr K. Smolarkiewicz Cranfield.
PARMA UNIVERSITY SIMULATIONS OF THE ISOLATED BUILDING TEST CASE F. AURELI, A. MARANZONI & P. MIGNOSA DICATeA, Parma University Parco Area delle Scienze.
ASME-PVP Conference - July
2ª aula Evolution Equation. The Finite Volume Method.
1 A new iterative technique for solving nonlinear coupled equations arising from nuclear waste transport processes H. HOTEIT 1,2, Ph. ACKERER 2, R. MOSE.
Improvement of the Semi-Lagrangian advection by ‘selective filling diffusion (SFD)' WG2-meeting COSMO-GM, Moscow, Michael Baldauf (FE13)
Spatial Reduction Algorithm for Numerical Modeling of Atmospheric Pollutant Transport Yevgenii Rastigejev, Philippe LeSager Harvard University Michael.
Numerical Schemes for Advection Reaction Equation Ramaz Botchorishvili Faculty of Exact and Natural Sciences Tbilisi State University GGSWBS,Tbilisi, July.
Numerical Methods for Partial Differential Equations CAAM 452 Spring 2005 Lecture 9 Instructor: Tim Warburton.
Deutscher Wetterdienst 1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Offenbach Michael Baldauf Deutscher Wetterdienst,
Nth-order Activity of Continuous Systems a,b,c Rodrigo Castro and c Ernesto Kofman a ETH Zürich, Switzerland b University of Buenos Aires & c CIFASIS-CONICET,
C M C C Centro Euro-Mediterraneo per i Cambiamenti Climatici COSMO General Meeting - September 8th, 2009 COSMO WG 2 - CDC 1 An implicit solver based on.
Comparing Two Advection Solvers in MAQSIP Shiang-Yuh Wu, Prasad Pai, Betty K. Pun AER San Ramon, CA 17 March 2000.
Implementation of an Advection Scheme based on Piecewise Parabolic Method (PPM) in the MesoNH The main goal of this study was to estimate if the RGSW model.
Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde How to make a three-dimensional numerical model that.
ECMWF 2015 Slide 1 Lagrangian/Eulerian equivalence for forward-in-time differencing for fluids Piotr Smolarkiewicz “The good Christian should beware of.
1 Spring 2003 Prof. Tim Warburton MA557/MA578/CS557 Lecture 5a.
A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation Eigil Kaas, Bennert Machenhauer and Peter Hjort Lauritzen Danish.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Atmosphere at rest experiments with the latest COSMO version.
Discontinuous Galerkin Methods for Solving Euler Equations Andrey Andreyev Advisor: James Baeder Mid.
7. Introduction to the numerical integration of PDE. As an example, we consider the following PDE with one variable; Finite difference method is one of.
+ Numerical Integration Techniques A Brief Introduction By Kai Zhao January, 2011.
Sensitivity experiments with the Runge Kutta time integration scheme Lucio TORRISI CNMCA – Pratica di Mare (Rome)
© Fluent Inc. 11/24/2015J1 Fluids Review TRN Overview of CFD Solution Methodologies.
Status of the COSMO-Model Package Ulrich Schättler.
Ale with Mixed Elements 10 – 14 September 2007 Ale with Mixed Elements Ale with Mixed Elements C. Aymard, J. Flament, J.P. Perlat.
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Implementation of Grid Adaptation in CAM: Comparison of Dynamic Cores Babatunde J. Abiodun 1,2 William J. Gutowski 1, and Joseph M. Prusa 1,3 1 Iowa State.
M. Baldauf, U. Blahak (DWD)1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting Sept. 2013, Sibiu M. Baldauf, U. Blahak (DWD)
10-13 Sept. 2012M. Baldauf (DWD)1 Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany Priority Project "Conservative Dynamical Core" Final report.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Status of the COSMO-1 configuration at MeteoSwiss Guy.
COMPUTATIONAL FLUID DYNAMICS (AE 2402) Presented by IRISH ANGELIN S AP/AERO.
Gas-kineitc MHD Numerical Scheme and Its Applications to Solar Magneto-convection Tian Chunlin Beijing 2010.Dec.3.
Discretization Methods Chapter 2. Training Manual May 15, 2001 Inventory # Discretization Methods Topics Equations and The Goal Brief overview.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz The new multi-layer snow model Guy de Morsier 1, Jean-Marie.
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Tuning the horizontal diffusion in the COSMO model.
EGU General assembly 2014, AS 1.5 A three-dimensional Conservative Cascade semi-Lagrangian transport Scheme using the Reduced Grid on the sphere (CCS-RG)
A Two-Phase Linear programming Approach for Redundancy Problems by Yi-Chih HSIEH Department of Industrial Management National Huwei Institute of Technology.
Deutscher Wetterdienst Flux form semi-Lagrangian transport in ICON: construction and results of idealised test cases Daniel Reinert Deutscher Wetterdienst.
The new PPM advection schemes in the MesoNH Jean-Pierre Pinty, Christine Lac, Tomislav Marić.
AIAA th AIAA/ISSMO Symposium on MAO, 09/05/2002, Atlanta, GA 0 AIAA OBSERVATIONS ON CFD SIMULATION UNCERTAINTIES Serhat Hosder, Bernard.
Performance of a Semi-Implicit, Semi-Lagrangian Dynamical Core for High Resolution NWP over Complex Terrain L.Bonaventura D.Cesari.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Status of the COSMO-1 configuration at MeteoSwiss Guy.
Operational COSMO of MeteoSwiss
Priority project CDC – Overview COSMO General Meeting
An accurate, efficient method for calculating hydrometeor advection in multi-moment bulk and bin microphysics schemes Hugh Morrison (NCAR*) Thanks to:
Introduction to Numerical Methods I
Implementation of Linear Sensitivity Approximate Method
Kazushi Takemura, Ishioka Keiichi, Shoichi Shige
Development of nonhydrostatic models at the JMA
Status of the COSMO-Software and Documentation
Conservative Dynamical Core (CDC)
Nodal Methods for Core Neutron Diffusion Calculations
Tuning the horizontal diffusion in the COSMO model
Convergence in Computational Science
21th Lecture - Advection - Diffusion
Introduction to Multigrid Method
Ensemble variance loss in transport models:
AIAA OBSERVATIONS ON CFD SIMULATION UNCERTAINITIES
AIAA OBSERVATIONS ON CFD SIMULATION UNCERTAINTIES
Implementation of a general tracer treatment
AIAA OBSERVATIONS ON CFD SIMULATION UNCERTAINTIES
Bogdan Rosa1, Marcin Kurowski1, Damian Wójcik1,
topic4: Implicit method, Stability, ADI method
High Accuracy Schemes for Inviscid Traffic Models
Conservative Dynamical Core (CDC)
6th Lecture : Numerical Methods
Support Activities and WG 6 Overview Status Report
Presentation transcript:

COSMO-GM Rome, WG-2 Meeting, Sept. 5, 2011 Implementation of a fully three dimensional advection scheme for the COSMO dynamical core Guy de Morsier (MeteoSwiss) This is the poster of a master student’s work and shows the use of the MPDATA scheme ... - Some preliminary results of the implementation of the MPDATA scheme in the COSMO model COSMO-GM Rome, WG-2 Meeting, Sept. 5, 2011

Agenda Advection in COSMO Introduction to the Multidimensional Positive Definite Advection Transport Algorithm, MPDATA Implementation of MPDATA 1 dimensional tests 2 dimensional tests Summary and Conclusions

Introduction to advection in COSMO Prognostic variables u, v, w, T, pp: with upwind scheme 5th order Positive definite variables qv, qc, qi, qr, qs, qg, tke, density: many choices VanLeer scheme PPM (piecewise parabolic method) Semi-Lagrange scheme (SL) Bott scheme (2nd or 4th order) Bott scheme First step: advective fluxes multiplied by weighting factor Second step: limit fluxes  algorithm is positive definite Split scheme: even time steps: xyz, odd time steps: zyx Can lead to oscillations, can empty a cell, reduced precision

Introduction to MPDATA (i) Aim of the diploma thesis (6 months) was to implement, evaluate and test a fully three-dimensional advection scheme in the COSMO model New advection scheme: MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) Main differences: MPDATA is multidimensional Bott is splitted SL is 3D but not conservative

Introduction to MPDATA (ii) Developed by P. K. Smolarkiewicz (NCAR) and used in EULAG Iterative algorithm: First step: Upwind-Approximation – positive definite, only 1st order accurate Second step: introduction of corrective advection fluxes, which reduce the truncation error produced by Upwind-Solution Optional further steps to reduce the truncation errors of previous step (at most 2nd order accuracy) Non-oscillatory option: fully monotone (no spurious extremes)

Implementation of MPDATA New Namelist parameters: iord: number of iterations possible values: 1,2,… nonos: nonos=0: non-oscillatory option: off nonos=1: non-oscillatory option: on (monotone scheme) idiv: idiv=0: non divergent flows idiv=1: divergent flows Recommended: iord=2, nonos=1

1-dimensional tests Courant Number = 0.625 Initial state in red After 4 cycles (+3200 time steps) in green Upstream Non-Oscillatory scheme from Li (2008)

Solid Body Rotation Tests Cone tracer with 5 grid points radius NO background NO orography Δx = 2.2km Δt = 20s Courant nb. ~ 0.3 Initial distribution for the solid body rotation tests

Solid Body Rotation Test I MPDATA (iord=2, nonos=1) Bott_2 advection scheme (a) (a) Max. 1 (b) (b) (d) (d) (c) (c) Min. 0 Tracer at the beginning (a), after 1h (b), after 2h (c) and after 3h (d)

Solid Body Rotation Test I Zoom of tracer after one rotation (4h) (start centre: ) iord=2, nonos=0 iord=3, nonos=0 Max: 0.2188 Bott Max: 0.5009 Max: 0.3480 Bott_2: coloured areas MPDATA: black contours

Solid Body Rotation Test I Zoom of tracer after one rotation (4h) (start centre: ) iord=2, nonos=1 iord=3, nonos=1 Max: 0.2166 Bott Max: 0.5009 Max: 0.3439 Bott_2: coloured areas MPDATA: black contours

Error measures Phase shift: distance of exact maximum to computed maximum Diffusion: difference between computed and exact maximum value

Error measures for Test I Advection Scheme Maximum value after one rotation Phase error Diffusion error Bott_2 0.501 1.414 0.499 Semi Lagrange 0.510 0.490 MPDATA: iord=2, nonos=0 0.219 2 0.781 iord=3, nonos=0 0.348 2.236 0.652 iord=2, nonos=1 0.217 0.783 iord=3, nonos=1 0.344 0.656 Conclusions: • MPDATA is very diffusive large phase errors for MPDATA smallest diffusion error for SL

Solid Body Rotation Test II MPDATA (iord=2, nonos=1) Bott_2 advection scheme (a) (a) Max. 1 (b) (b) (d) (d) (c) (c) Background value 0.3 Tracer at the beginning (a), after 1h (b), after 2h (c) and after 3h (d)

Solid Body Rotation Test II Tracer after one rotation (4h) (start centre: ) iord=2, nonos=0 iord=3, nonos=0 Min/Max: 0.2612/0.6333 Min/Max: 0.1990/0.7853 Bott Min/Max: 0.2733/0.8439 Bott_2: coloured areas MPDATA: black contours

Solid Body Rotation Test II Tracer after one rotation (4h) (start centre: ) iord=2, nonos=1 iord=3, nonos=1 Min/Max: 0.2809/0.6249 Min/Max: 0.2809/0.7388 Bott Min/Max: 0.2733/0.8439 Bott_2: coloured areas MPDATA: black contours

Error measures for Test II Advection Scheme Maximum value after one rotation Phase error Diffusion error Bott_2 0.273 / 0.844 1.414 0.156 Semi Lagrange 0.125 / 0.843 0.157 MPDATA: iord=2, nonos=0 0.261 / 0.633 2 0.367 iord=3, nonos=0 0.199 / 0.785 3.162 0.215 iord=2, nonos=1 0.281 / 0.625 0.375 iord=3, nonos=1 0.281 / 0.739 0.261 Conclusions: under shooting of SL (boundary problem) advantage of the non-oscillatory option of MPDATA

Tracer Test in a deformation flow Cone tracer with 5 grid points radius NO background NO orography Δx = 2.2km Δt = 20s max. Courant nb. ~ 0.04

Zoom of tracer around centre Deformation flow Zoom of tracer around centre

Tracer after 10h (ca. 1.2 rotations) start centre: Deformation flow Tracer after 10h (ca. 1.2 rotations) start centre: Bott_2 Semi-Lagrange

Deformation flow Tracer after 10h (ca. 1.2 rotations) start centre: iord=2, nonos=0 iord=3, nonos=0

Deformation flow Tracer after 10h (ca. 1.2 rotations) start centre: iord=2, nonos=1 iord=3, nonos=1

Error measures for deformation flow Advection Scheme Maximum value after 5h Maximum value after 10h Bott_2 0.297 0.148 Semi Lagrange 0.334 0.164 MPDATA: iord=2, nonos=0 0.278 0.126 iord=3, nonos=0 0.299 0.149 iord=2, nonos=1 0.267 0.128 iord=3, nonos=1 0.287 0.146 Conclusions: • best performance for SL small impact of MPDATA parameter choice small advantage of MPDATA over Bott

Summary and Conclusions MPDATA can be much more diffusive than Bott and SL schemes High phase errors with MPDATA in rotation tests MPDATA is better than the Bott scheme for divergent/convergent flows More computer time needed for MPDATA MPDATA scheme was not tested in a 3D configuration For the moment MPDATA runs only on one processor What would the results of Bott with a full strang splitting at each time step (zyxyz) be?

Thank you for your attention!