Unsteady flow Rapid change of discharge Chapter 11

Slides:



Advertisements
Similar presentations
Normal mode method in problems of liquid impact onto elastic wall A. Korobkin School of Mathematics University of East Anglia
Advertisements

MEKANIKA FLUIDA II Nazaruddin Sinaga
Surge Pressure Computations
BERNOULLI’S EQUATION Bernoulli’s equation states that the sum of all forms of energy in a fluid flowing along an enclosed path is the same at any two points.
Calculating Temperature Change in a Rising Air Mass.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
November 18 AP Physics.
BALANCING 2 AIM: To solve equations with variables on both sides.
Surface science: physical chemistry of surfaces Massimiliano Bestetti Lesson N° October 2011.
FLOW IN PIPES, PIPE NETWORKS
Stresses due to fluid pressure in thin cylinders
Fluid Mechanics EIT Review.
Describe a water supply distribution system
Chapter 3 – Bernoulli’s Equation
Equilibrium and Elasticity
11 th International Conference on Pressure Surges Lisbon, Portugal, 24 – 26 October 2012 Evaluation of flow resistance in unsteady pipe.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Density, ρ= mass/unitvolume –Slugs/ft3;kg/m3
Fluid Mechanics.
Case of HPP Blanca, Slovenia Jernej Mazij, Litostroj Power d. o. o
Fluid Properties and Units CEE 331 April 26, 2015 CEE 331 April 26, 2015 
Fluid Mechanics 07.
HYDRAULICS (670441) Philadelphia University Faculty of Engineering
Lesson 25 TWO-PHASE FLUID FLOW
II. Properties of Fluids. Contents 1. Definition of Fluids 2. Continuum Hypothesis 3. Density and Compressibility 4. Viscosity 5. Surface Tension 6. Vaporization.
1 Part B2: Hydropower B2.2 Hydropower system design.
Numerical Hydraulics W. Kinzelbach with Marc Wolf and Cornel Beffa Lecture 3: Computation of pressure surges.
What are the criteria for a design? 1.Should meet the objectives 2.Should have the lowest cost 3.Should be ethical/legal 4.Should be safe.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Statics CEE 331 June 13, 2015 
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Properties and Units CEE 331 June 15, 2015 CEE 331 June 15, 2015 
Chapter 9 Solids and Fluids
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering When the Steady- State design fails!  Hydraulic Transients.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Statics CEE 331 June 29, 2015 CEE 331 June 29, 2015 
Fluid Properties and Units CVEN 311 . Continuum ä All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Properties and Units CEE 331 July 12, 2015 
Chapter 9 Solids and Fluids. Solids Has definite volume Has definite volume Has definite shape Has definite shape Molecules are held in specific locations.
Statics CEE 331 July 14, 2015 CEE 331 July 14, 2015 
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering When the Steady- State design fails!  Hydraulic Transients.
Chapter 9 Solids and Fluids
Fluid Mechanics 05.
MER Design of Thermal Fluid Systems Pumps and Fans Professor Anderson Spring Term
PHAROS UNIVERSITY ME 259 FLUID MECHANICS FOR ELECTRICAL STUDENTS Basic Equations for a Control Volume.
Boundary layer concept
Knight: Chapter 15 Fluids & Elasticity ( Fluids & Pressure)
Bernoulli’s Principle. Usually, liquids are considered “incompressible”, meaning that the density of the liquid remains nearly constant. Gases are easily.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Mechanical Vibrations
Computational fluid dynamics Authors: A. Ghavrish, Ass. Prof. of NMU, M. Packer, President of LDI inc.
Unit 1: Fluid Dynamics An Introduction to Mechanical Engineering: Part Two Fluid dynamics Learning summary By the end of this chapter you should have learnt.
اگر حجم کنترل در حال حرکت بود چه سرعتی در فرمول؟ + –
The Alaskan pipeline, a significant accomplishment of the engineering profession, transports oil 1286 km across the state of Alaska. The pipe diameter.
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
One Minute Paper Statics; reply. Fluid dynamics  Fluids in motion Pumps Fans Compressors Turbines Heat exchangers.
Bernoulli Equation – Pitot tube  Horizontal  Velocity at stagnation point is 0  Incompressible fluid  Steady state  Velocity as function of pressure.
Hydraulic System.
講者: 許永昌 老師 1. Contents Fluids and Density Pressure Pressure in Liquids (static) The pressure at depth d: p=p 0 +  gd. Buoyancy: Bernoulli’s Equation.
Chapter 12 Compressible Flow
FLUID MECHANICS where: At standard condition  W = 1000 kg/m 3  W = 9.81 KN/m 3.
SUGGESTED MINIMUM KNOWLEDGE OF FLUID MECHANICS AND FOR FE EXAM
CEE 410 Hydraulic Engineering - Lecture 15 -Unsteady Flow and Surge in Piping Networks Mark Oleinik, P.E.
1. Two rods, one of nylon and one of steel, are rigidly connected as shown in Fig. P.1.2. Determine the stresses and axial deformations when an axial load.
Chapter 11 Fluids.
College Physics, 7th Edition
Water Resources Engineering
Pimpri Chinchwad Polytechnic Nigdi Pune Program : Mechanical Engineering Course: Fluid Mechanics & Machinery.
Basic Hydrology & Hydraulics: DES 601
Find : Velocity V and discharge Q Problem 2
Measuring Fluid Flow Rate,
FLUIDS IN MOTION The equations that follow are applied when a moving fluid exhibits streamline flow. Streamline flow assumes that as each particle in the.
Applications of Bernoulli Equations
Presentation transcript:

Unsteady flow Rapid change of discharge Chapter 11 Water Hammer Unsteady flow Rapid change of discharge Chapter 11

Water Hammer Example penstock 6 km long Elevation =1670 m D= 1m 3 m Elevation =1000 m ปิดประตูน้ำ อย่างฉับพลัน ?

Penstock ยาวมาก http://www.tibranch.com/tibranchmain3.html

Incompressible Assumption ตัวอย่าง Steel Penstock diameter = 1m ยาว 6000 m V =3.7 m/s ปิด valve ให้สนิทใช้เวลา 4 วินาที จงหาความดันที่เพิ่มขึ้น และ แรง Tension ในท่อ Surge Pressure Static pressure line Hydraulic gradient

Momentum Equation δh = 565 m Mass of liquid in pipeline= Momentum of liquid = δh = 565 m

หา pressure ที่ Valve Pressure ที่ Valve ก่อนปิด ( Re = 3.7×1/8×10-7 = 4.63×106 , k/D = 0.03/1000 = 3×10-5 Moody diagram ให้ f = .011) ปิด valve: Pressure head ที่ Valve = 670-46 = 624 m คิดเป็น pressure = 9810×624 N/m2 = 6.12 MPa ไม่รวม Water Hammer รวมแล้ว =?

ตัด Free Body Diagram หา แรง tension 6.12 MPa 3.06 MN Thickness= 3.06MN/118MPa=0.026 m ไม่รวม Water Hammer ถ้ารวมแล้วจะต้องหนาเท่าไร

วิธีแก้ปัญหา http://www.armourtech.com/museum/hsdam3.jpg Surge Tank (Fig.11-21 http://www.armourtech.com/museum/hsdam3.jpg

Surge Tank

วิธีแก้ปัญหา http://www.shock-guard.com/shockguard-images/surge_shcm.gif

Transients caused by pumps Read 11-11 Fig. 11-18

Control Dievices 11-12 Roberson Surge tanks (Fig. 11-21) Air Chambers Valves Flywheels

Compressible Assumption Vo P ρ P+δP ρ+δρ ตารางท้ายตำรา Fluid Mechanics มีค่า K (Bulk Modulus) เปิดตาราง @ 30oC K= 2.23×109 N/m3

เปลี่ยน Frame of Reference เคลื่อนที่ไปกับ wave ดัวยความเร็ว c c P+δP ρ+δρ Vo-c P ρ Conservation of mometum

Wave speed c Rigid pipe Conservation of mass ( แทน Continuity Equation เพราะ density เปลี่ยน) ρ = density @ 30oC = 995 Kg/m3 c = 1497 m/s say 1500 m/s

Elastic Pipe c E = Bulk Modulus of Elasticity of Pipe = 207 GPa

Exercise A steel pipe line 1000 mm diameter conveys 2 cumecs (m3/s) under a head of 430 m. What must be the thickness of the walls if the pipe is to withstand the pressure rise caused by sudden closure of a valve? Determine also the rise in pressure. The safe stress for the steel is 100 MPa, E = 207 GPa, K= 2.15 GPa.

Oscillating Pressure Fig 11-6 Roberson T< L/c V=0

At T= L/c คลื่นเดินทางกลับมากระแทกน้ำในอ่างเก็บน้ำ T= L/c

T<2 L/c

T =2L/C ความดันทุกจุด = Static Head V กลับข้าง T=2 L/c

ความดัน ต่ำกว่า static head T= 3 L/c V=0 ความดัน ต่ำกว่า static head

ครบ oscillating cycle T= 4 L/c

การเปลี่ยนแปลงความดัน ที่ประตูน้ำ Fig. 11-7 Roberson Time H Static Line 4 L/c Fig. 11-17 Roberson = Gradual Valve Closure