Comp/Math 553: Algorithmic Game Theory Lecture 15

Slides:



Advertisements
Similar presentations
Yossi Sheffi Mass Inst of Tech Cambridge, MA ESD.260J/1.260J/15.
Advertisements

6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
Network Economics -- Lecture 4: Auctions and applications Patrick Loiseau EURECOM Fall 2012.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 16.
6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
Yang Cai Sep 24, An overview of today’s class Prior-Independent Auctions & Bulow-Klemperer Theorem General Mechanism Design Problem Vickrey-Clarke-Groves.
Class 4 – Some applications of revenue equivalence
Yang Cai Oct 01, An overview of today’s class Myerson’s Auction Recap Challenge of Multi-Dimensional Settings Unit-Demand Pricing.
On Optimal Single-Item Auctions George Pierrakos UC Berkeley based on joint works with: Constantinos Daskalakis, Ilias Diakonikolas, Christos Papadimitriou,
Prior-free auctions of digital goods Elias Koutsoupias University of Oxford.
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
CPS Bayesian games and their use in auctions Vincent Conitzer
USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University.
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
Yang Cai Sep 10, An overview of today’s class Case Study: Sponsored Search Auction Myerson’s Lemma Back to Sponsored Search Auction.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Part 1: Optimal Multi-Item Auctions Constantinos Daskalakis EECS, MIT Reference: Yang Cai, Constantinos Daskalakis and Matt Weinberg: An Algorithmic Characterization.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Yang Cai Oct 15, Interim Allocation rule aka. “REDUCED FORM” : Variables: Interim Allocation rule aka. “REDUCED FORM” : New Decision Variables j.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
Yang Cai Sep 17, An overview of today’s class Expected Revenue = Expected Virtual Welfare 2 Uniform [0,1] Bidders Example Optimal Auction.
Algorithmic Applications of Game Theory Lecture 8 1.
Yang Cai Sep 24, An overview of today’s class Prior-Independent Auctions & Bulow-Klemperer Theorem General Mechanism Design Problems Vickrey-Clarke-Groves.
Mechanism Design: Online Auction or Packet Scheduling Online auction of a reusable good (packet slots) Agents types: (arrival, departure, value) –Agents.
Competitive Auctions and Digital Goods Andrew Goldberg, Jason Hartline, and Andrew Wright presenting: Keren Horowitz, Ziv Yirmeyahu.
Competitive Analysis of Incentive Compatible On-Line Auctions Ron Lavi and Noam Nisan SISL/IST, Cal-Tech Hebrew University.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Collusion and the use of false names Vincent Conitzer
Near-Optimal Simple and Prior-Independent Auctions Tim Roughgarden (Stanford)
Yang Cai Sep 8, An overview of the class Broad View: Mechanism Design and Auctions First Price Auction Second Price/Vickrey Auction Case Study:
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
More on Social choice and implementations 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A Using slides by Uri.
1 Deterministic Auctions and (In)Competitiveness Proof sketch: Show that for any 1  m  n there exists a bid vector b such that Theorem: Let A f be any.
Yang Cai Oct 08, An overview of today’s class Basic LP Formulation for Multiple Bidders Succinct LP: Reduced Form of an Auction The Structure of.
1 Competitive Auctions Authors: A. V. Goldberg, J. D. Hartline, A. Wright, A. R. Karlin and M. Saks Presented By: Arik Friedman and Itai Sharon.
Chapter 4 Bayesian Approximation By: Yotam Eliraz & Gilad Shohat Based on Chapter 4 on Jason Hartline’s book Seminar in Auctions and Mechanism.
Auctions for Digital Goods Ali Echihabi University of Waterloo – Nov 2004.
Optimal mechanisms (part 2) seminar in auctions & mechanism design Presentor : orel levy.
Econ 805 Advanced Micro Theory 1 Dan Quint Fall 2007 Lecture 3 – Sept
Yang Cai Oct 06, An overview of today’s class Unit-Demand Pricing (cont’d) Multi-bidder Multi-item Setting Basic LP formulation.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Comp/Math 553: Algorithmic Game Theory Lecture 10
Comp/Math 553: Algorithmic Game Theory Lecture 11
False-name Bids “The effect of false-name bids in combinatorial
Bayesian games and their use in auctions
Comp/Math 553: Algorithmic Game Theory Lecture 08
Mechanism design with correlated distributions
Comp/Math 553: Algorithmic Game Theory Lecture 09
Tuomas Sandholm Computer Science Department Carnegie Mellon University
Comp/Math 553: Algorithmic Game Theory Lecture 14
Chapter 4 Bayesian Approximation
Comp/Math 553: Algorithmic Game Theory Lecture 13
Market Design and Analysis Lecture 4
Prophet Inequalities A Crash Course
סמינר במכירות פומביות הרצאה 4 מעביר: טל סימינוביץ
Authors: Oren Rigbi Damian Goren
Economics and Computation Week #13 Revenue of single Item auctions
Crash Course on Multi-Dimensional Mechanism Design
Introduction to Mechanism Design
CPS 173 Auctions & Combinatorial Auctions
Near-Optimal Simple and Prior-Independent Auctions Tim Roughgarden (Stanford)
CPS Auctions & Combinatorial Auctions
Introduction to Mechanism Design
Information, Incentives, and Mechanism Design
Auction Theory תכנון מכרזים ומכירות פומביות
CPS Bayesian games and their use in auctions
Presentation transcript:

Comp/Math 553: Algorithmic Game Theory Lecture 15 Mingfei Zhao

Menu Recap: Prophet Inequalities Bulow-Klemperer Theorem Single Sample

Prophet Inequality Prophet Inequality [Krengel-Sucheston-Garling ’79]: There exists a strategy guaranteeing: expected payoff ≥ 1/2 E[maxi πi]. In fact, a threshold strategy suffices. Def: A threshold strategy is one that sets a threshold ζ, and picks the first prize that exceeds that threshold. - Proof: On board; proof by Samuel-Cahn 1984. - Remark: Our lower-bound only credits ζ units of value when more than one prize is above ζ. This means that factor of ½ applies even if, whenever there are multiple prizes above the threshold, the strategy picks the smallest one.

Application to Single-item Auctions (cont’d) Here is a specific auction whose allocation rule satisfies (*) : Set reserve price ri =φi-1 (ζ) for each bidder i. Give the item to the highest bidder i who meets her reserve price (if any), and charge him the maximum of his reserve ri and the second highest bid. Interesting Open Problem: How about anonymous reserve? We know it’s between [1/4, 1/2], can you pin down the exact approximation ratio? Another auction whose allocation rule satisfies (*) is the following sequential posted price auction: Visit bidders in order 1,…,n Until item has not been sold, offer it to the next bidder i at price φi-1(ζ) Modification if there is no ζ such that Pr[maxi φi (vi)+ ≥ ζ] = ½ : find a ζ such that Pr[maxi φi (vi)+ ≥ ζ] ≥ ½ ≥ Pr[maxi φi (vi)+ > ζ] In Step 2: “give to the highest bidder who meets her reserve” or “give to the highest bidder who exceeds her reserve” works.

Prior-Independent Auctions

Another Critique to the Optimal Auction What if bidder distributions are unknown? When there are enough past data, it may be reasonable to assume that the distributions have been learned. But, if the market is “thin,” we may not be confident about bidders’ distributions. Can we design auctions that do not use any knowledge about the distributions, but perform almost as well as if they knew everything about the distributions? Active research agenda, called prior-independent auction design.

Bulow-Klemperer Theorem [Bulow-Klemperer’96] Consider any regular distribution F and integer n : Remarks: Vickrey auction is prior-independent 2. Theorem implies that more competition is better than finding the right auction format.

Proof of Bulow-Klemperer Consider another auction M with n+1 bidders: Run Myerson on the first n bidders. If the item is unallocated, give it to the last bidder for free. This is a DSIC mechanism. It has the same revenue as Myerson’s auction with n bidders. It’s allocation rule always gives out the item. Vickrey Auction also always gives out the item, but always to the bidder who has the highest value (also with the highest virtual value). Vickrey Auction has the highest virtual welfare among all DSIC mechanisms that always give out the item! ☐

Bulow-Klemperer Theorem [Bulow-Klemperer’96] Consider any regular distribution F and integer n : Corollary: Consider any regular distribution F and integer n :

Prior Independent vs. Single Sample Consider the auction with single item and single bidder. What can mechanism designer do if he has no information about distribution? Assume there is a single sample of the bidder’s value distribution. Using this sample as a reserve price gives at least half of the optimal revenue if the distribution is regular! (proof on board) For multiple non-i.i.d. bidders, if there is a single sample for each bidder, Vickrey with reserve gives good approximation to optimal revenue (not shown here).