RAID Oh yes Whats RAID? Redundant Array (of) Independent Disks. A scheme involving multiple disks which replicates data across multiple drives. Methods.

Slides:



Advertisements
Similar presentations
A Case for Redundant Arrays Of Inexpensive Disks Paper By David A Patterson Garth Gibson Randy H Katz University of California Berkeley.
Advertisements

Redundant Array of Independent Disks (RAID) Striping of data across multiple media for expansion, performance and reliability.
A CASE FOR REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAID) D. A. Patterson, G. A. Gibson, R. H. Katz University of California, Berkeley.
What is RAID Redundant Array of Independent Disks.
Copyright © 2006 Quest Software SQL 2005 Disk I/O Performance By Bryan Oliver SQL Server Domain Expert.
1 Lecture 18: RAID n I/O bottleneck n JBOD and SLED n striping and mirroring n classic RAID levels: 1 – 5 n additional RAID levels: 6, 0+1, 10 n RAID usage.
1 Jason Drown Mark Rodden (Redundant Array of Inexpensive Disks) RAID.
Faculty of Information Technology Department of Computer Science Computer Organization Chapter 7 External Memory Mohammad Sharaf.
RAID (Redundant Arrays of Independent Disks). Disk organization technique that manages a large number of disks, providing a view of a single disk of High.
RAID A RRAYS Redundant Array of Inexpensive Discs.
RAID: Redundant Array of Inexpensive Disks Supplemental Material not in book.
RAID Redundant Array of Independent Disks
CSCE430/830 Computer Architecture
 RAID stands for Redundant Array of Independent Disks  A system of arranging multiple disks for redundancy (or performance)  Term first coined in 1987.
“Redundant Array of Inexpensive Disks”. CONTENTS Storage devices. Optical drives. Floppy disk. Hard disk. Components of Hard disks. RAID technology. Levels.
Enhanced Availability With RAID CC5493/7493. RAID Redundant Array of Independent Disks RAID is implemented to improve: –IO throughput (speed) and –Availability.
RAID- Redundant Array of Inexpensive Drives. Purpose Provide faster data access and larger storage Provide data redundancy.
RAID Redundant Arrays of Inexpensive Disks –Using lots of disk drives improves: Performance Reliability –Alternative: Specialized, high-performance hardware.
R.A.I.D. Copyright © 2005 by James Hug Redundant Array of Independent (or Inexpensive) Disks.
Chapter 3 Presented by: Anupam Mittal.  Data protection: Concept of RAID and its Components Data Protection: RAID - 2.
2P13 Week 11. A+ Guide to Managing and Maintaining your PC, 6e2 RAID Controllers Redundant Array of Independent (or Inexpensive) Disks Level 0 -- Striped.
Sean Traber CS-147 Fall  7.9 RAID  RAID Level 0  RAID Level 1  RAID Level 2  RAID Level 3  RAID Level 4 
REDUNDANT ARRAY OF INEXPENSIVE DISCS RAID. What is RAID ? RAID is an acronym for Redundant Array of Independent Drives (or Disks), also known as Redundant.
RAID Technology CS350 Computer Organization Section 2 Larkin Young Rob Deaderick Amos Painter Josh Ellis.
I/O Systems and Storage Systems May 22, 2000 Instructor: Gary Kimura.
CSE 451: Operating Systems Winter 2010 Module 13 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Mark Zbikowski Gary Kimura.
Servers Redundant Array of Inexpensive Disks (RAID) –A group of hard disks is called a disk array FIGURE Server with redundant NICs.
Session 3 Windows Platform Dina Alkhoudari. Learning Objectives Understanding Server Storage Technologies Direct Attached Storage DAS Network-Attached.
Data Storage Willis Kim 14 May Types of storages Direct Attached Storage – storage hardware that connects to a single server Direct Attached Storage.
By : Nabeel Ahmed Superior University Grw Campus.
Chapter 6 RAID. Chapter 6 — Storage and Other I/O Topics — 2 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f.
RAID Shuli Han COSC 573 Presentation.
CS 352 : Computer Organization and Design University of Wisconsin-Eau Claire Dan Ernst Storage Systems.
Redundant Array of Independent Disks
Two or more disks Capacity is the same as the total capacity of the drives in the array No fault tolerance-risk of data loss is proportional to the number.
N-Tier Client/Server Architectures Chapter 4 Server - RAID Copyright 2002, Dr. Ken Hoganson All rights reserved. OS Kernel Concept RAID – Redundant Array.
RAID COP 5611 Advanced Operating Systems Adapted from Andy Wang’s slides at FSU.
Redundant Array of Inexpensive Disks aka Redundant Array of Independent Disks (RAID) Modified from CCT slides.
CSI-09 COMMUNICATION TECHNOLOGY FAULT TOLERANCE AUTHOR: V.V. SUBRAHMANYAM.
RAID REDUNDANT ARRAY OF INEXPENSIVE DISKS. Why RAID?
RAID SECTION (2.3.5) ASHLEY BAILEY SEYEDFARAZ YASROBI GOKUL SHANKAR.
Copyright © Curt Hill, RAID What every server wants!
Redundant Array of Independent Disks.  Many systems today need to store many terabytes of data.  Don’t want to use single, large disk  too expensive.
The concept of RAID in Databases By Junaid Ali Siddiqui.
RAID Disk Arrays Hank Levy. 212/5/2015 Basic Problems Disks are improving, but much less fast than CPUs We can use multiple disks for improving performance.
RAID Systems Ver.2.0 Jan 09, 2005 Syam. RAID Primer Redundant Array of Inexpensive Disks random, real-time, redundant, array, assembly, interconnected,
1 CEG 2400 Fall 2012 Network Servers. 2 Network Servers Critical Network servers – Contain redundant components Power supplies Fans Memory CPU Hard Drives.
Hands-On Microsoft Windows Server 2008 Chapter 7 Configuring and Managing Data Storage.
Seminar on RAID TECHNOLOGY Redundant Array of Independent Disk By CHANDAN.R 8 TH ISE, 1ap05is013 Under the guidance of Mr.Mithun.B.N, Lecturer,Dept.ISE.
Cloud Computing Vs RAID Group 21 Fangfei Li John Soh Course: CSCI4707.
Enhanced Availability With RAID CC5493/7493. RAID Redundant Array of Independent Disks RAID is implemented to improve: –IO throughput (speed) and –Availability.
RAID Technology By: Adarsha A,S 1BY08A03. Overview What is RAID Technology? What is RAID Technology? History of RAID History of RAID Techniques/Methods.
What is raid? RAID is the term used to describe a storage systems' resilience to disk failure through the use of multiple disks and by the use of data.
RAID TECHNOLOGY RASHMI ACHARYA CSE(A) RG NO
Network-Attached Storage. Network-attached storage devices Attached to a local area network, generally an Ethernet-based network environment.
I/O Errors 1 Computer Organization II © McQuain RAID Redundant Array of Inexpensive (Independent) Disks – Use multiple smaller disks (c.f.
What every server wants!
RAID Non-Redundant (RAID Level 0) has the lowest cost of any RAID
RAID Disk Arrays Hank Levy 1.
RAID RAID Mukesh N Tekwani
RAID Disk Arrays Hank Levy 1.
CSE 451: Operating Systems Winter 2009 Module 13 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Mark Zbikowski Gary Kimura 1.
TECHNICAL SEMINAR PRESENTATION
RAID Redundant Array of Inexpensive (Independent) Disks
UNIT IV RAID.
Mark Zbikowski and Gary Kimura
CSE 451: Operating Systems Winter 2012 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Mark Zbikowski Gary Kimura 1.
CSE 451: Operating Systems Autumn 2009 Module 19 Redundant Arrays of Inexpensive Disks (RAID) Ed Lazowska Allen Center 570.
RAID Disk Arrays Hank Levy 1.
RAID RAID Mukesh N Tekwani April 23, 2019
Presentation transcript:

RAID Oh yes

Whats RAID? Redundant Array (of) Independent Disks. A scheme involving multiple disks which replicates data across multiple drives. Methods include Mirroring (maintaining an identical copy on another disk), Striping, (splitting data across disks), and Parity (error identification and correction methods)

Whats RAID good for? Helps prevent data loss though replication Can increase access times using multiple disks Can provide enterprise-level performance using inexpensive and unreliable hardware Decreases the probability that a hardware fault will bring down the availability of a server and can help prevent data loss. RAID is not a replacement for backups.

Cool, ok, how do I do it? Software RAID Usually at the operating system level Advanced levels usually only supported by enterprise grade systems Hardware RAID Interface cards Usually costly Most often times proprietary (cannot switch controller hardware to another brand without destroying the array)

So what kinds of RAID are available? Seven standard levels of RAID Each have their advantages and disadvantages Some non-standard levels, usually proprietary

RAID 0 (striping) Divides data into blocks, and then spreads the blocks amongst disks in the array Offers NO redundancy Any disk failure will corrupt the entire array

RAID 1 (mirroring) All Data is mirrored on duplicate disks Provides fault tolerance from failure from all but one drive. Least space efficient method Can be fast if implemented correctly

RAID 2 (Hamming Code ECC) Each word of data is spread out amongst disks Error Correction Codes are stored on dedicated ECC disks Many ECC disks are required, High controller costs. (No commercial implementations have been made)

RAID 3 (bit level striping with parity) Data block is subdivided (striped) and written to data disks. Parity is recorded on a dedicated parity disk. Higher efficiency than RAID 2, yet controllers are expensive. Too resource intensive to be implemented in software. Very high read and write transfer rates.

RAID 4 (block level striping with parity) Identical to RAID 4, but does block-level striping instead of byte-level striping. Again, complex controller design means high cost. Write speed is slower, read speed remains high.

RAID5 (Distributed Parity) Data blocks written on one data disk, Parity is stored on another disk Requires a minimum of 3 drives, can tolerate one disk failure. Storage efficiency is equal to the sum of the number of disks in the array, minus one disk. Good transfer rates, highest read rate. Efficient, and a very popular RAID level to use due to its low cost and high efficiency

RAID6 (redundant distributed parity) RAID 6 extends RAID 5 by using 2 sets of parity blocks – Total storage space is number of drives, minus 2 drives. Can tolerate 2 failures at once. Requires an additional parity calculation.

RAID 10 (Striped Mirrored arrays) Stripped array whose segments are RAID 1 arrays. Same overhead & fault tolerance as RAID 1 High speed Can sustain certain multiple drive failures