The Nature of Transition Disks in Perseus, Taurus and Auriga Lucas Cieza 1, Matthias Schreiber 2, Gisela Romero 2, Jonathan Williams 1 Alberto Rebassa-Mansergas.

Slides:



Advertisements
Similar presentations
THESIS – the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft a concept for a joint NASA/ESA exoplanet characterization mission.
Advertisements

Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Accretion and Variability in T Tauri Disks James Muzerolle.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Protoplanetary Disks: The Initial Conditions of Planet Formation Eric Mamajek University of Rochester, Dept. of Physics & Astronomy Astrobio 2010 – Santiago.
Dust Growth in Transitional Disks Paola Pinilla PhD student Heidelberg University ZAH/ITA 1st ITA-MPIA/Heidelberg-IPAG Colloquium "Signs of planetary formation.
Observing How Habitable Conditions Develop (Or Not) in Protoplanetary Disks Colette Salyk National Optical Astronomy Observatory Credit: JPL-Caltech/T.
Circumstellar disks: what can we learn from ALMA? March ARC meeting, CSL.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
Disks around young Brown Dwarfs as critical testbeds for models of dust evolution: an investigation with ALMA Luca Ricci (CARMA Fellow, Caltech) Testi.
207th AAS Meeting Washington D.C., 8-13 January The Spitzer SWIRE Legacy Program Spitzer Wide-Area Infrared Extragalactic Survey Mari Polletta (UCSD)
1 Concluding Panel Al Glassgold Sienny Shang Jonathan Williams David Wilner.
New Results from the GALEX Nearby Young-Star Survey David R. Rodriguez (Universidad de Chile), B. Zuckerman (UCLA), Joel H. Kastner (RIT), Laura Vican.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Relating Mass and Light in the COSMOS Field J.E. Taylor, R.J. Massey ( California Institute of Technology), J. Rhodes ( Jet Propulsion Laboratory) & the.
Results from the Keck Interferometer Commissioning YSO Project Rafael Millan-Gabet Caltech/Michelson Science Center Collaboration: PIs: John Monnier (U.
21 Mars 2006Visions for infrared astronomy1 Protoplanetary worlds at the AU scale Jean Philippe Berger J. Monnier, R. Millan-Gabet, W. Traub, M. Benisty,
A new class of warm debris disks? Rachel Smith, Institute for Astronomy; Mark Wyatt, Abstract.
Multiwavelength Continuum Survey of Protostellar Disks in Ophiuchus Left: Submillimeter Array (SMA) aperture synthesis images of 870 μm (350 GHz) continuum.
L. Matrà 1,2, B. Merín 1, C. Alves de Oliveira 1, N. Huélamo 3, Á. Kóspál 4, N. L.J. Cox 5, Á. Ribas 1,3, E. Puga 1, R. Vavrek 1, P. Royer 5, T. Prusti.
The Impact of Multiplicity on Planet Formation Adam Kraus Hawaii-IfA Michael Ireland (Sydney), Frantz Martinache (Subaru), Lynne Hillenbrand (Caltech)
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Dispersal of protoplanetary disks by central wind stripping Isamu Matsuyama University of California Berkeley David Hollenbach SETI Institute Doug Johnstone.
The Origin of Gaps and Holes in Transition Disks Uma Gorti (SETI Institute) Collaborators: D. Hollenbach (SETI), G. D’Angelo (SETI/NASA Ames), C.P. Dullemond.
Protoplanetary discs of isolated VLMOs discovered in the IPHAS survey Luisa Valdivielso (IAC) ‏ Collaborators: E. Martín, H. Bouy, E. Solano, J.Drew, R.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
Next Gen VLA Observations of Protoplanetary Disks A. Meredith Hughes Wesleyan University ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
WITNESSING PLANET FORMATION WITH ALMA AND THE ELTs GMT TMTE-ELT Lucas Cieza, IfA/U. of Hawaii ABSTRACT: Over the last 15 years, astronomers have discovered.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
Figure 1: Coronagraphic polarimetry of GM Aur comparing polarimetry results without (top) and with (bottom) matched PSF-subtraction. Without subtraction.
The Far-Infrared Universe: from the Universe’s oldest light to the birth of its youngest stars Jeremy P. Scott, on behalf of Locke D. Spencer Physics and.
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
P4-1 Precision Radial Velocity Spectrometer (PRVS) 2nd generation (“Aspen”) instrument for Gemini R=70,000,  m, RV stability < 1 m/s Goal: Find.
Characterization and selection of extrasolar planetary transit candidates Jose A. Gallardo N. P. Universidad Catolica de Chile, Santiago, Chile. Ecole.
Spitzer c2d results on disk types, time-scales and disk evolution from 1 to 10 Myrs Bruno Merín 1, Luke Maud 1, Hervé Bouy 1, Loredana Spezzi 2, Isa Oliveira.
Galactic Astronomy 銀河物理学特論 I Lecture 3-2: Evolution of Luminosity Functions of Galaxies Seminar: Lily et al. 1995, ApJ, 455, 108 Lecture: 2011/12/12.
Ezequiel Treister Advisors: Meg Urry (Yale) José Maza (U. de Chile)
Evolved Protoplanetary Disks: The Multiwavelength Picture Aurora Sicilia-Aguilar Th. Henning, J. Bouwman, A. Juhász, V. Roccatagliata, C. Dullemond, L.
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.)
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
A Spitzer Survey of Dusty Disks in Scorpius-Centaurus Christine H. Chen (STScI) M. Bitner (STScI), E. Mamajek (Rochester), Marc Pecaut (Rochester), K.
The All-Orion Spectroscopic Survey and other Hecto Surveys of Pre-main Sequence Populations James Muzerolle (for Lori Allen) with Tom Megeath, Elaine Winston,
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Leonardo Testi: Formation and Evolution of Brown Dwarfs, Stars in Galaxies, La Palma, Mar 8, 2003 Origin and Early Evolution of Brown Dwarfs Leonardo Testi,
The Cores to Disks Spitzer Legacy Science Project PI: Neal J. Evans II and the c2d Team Maryland Team: Mundy, Lai, Chapman and several UG students.
Super star clusters Super star clusters and and star-formation in interacting galaxies star-formation in interacting galaxies Zara RANDRIAMANAKOTO Zara.
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
THE SPATIAL DISTRIBUTION OF LARGE AND SMALL DUST GRAINS IN TRANSITIONAL DISKS ELIZABETH GUTIERREZ VILLANOVA UNIVERSITY 2015 SOCORRO COHORT STUDENT ADVISOR:
Grain Growth and Substructure in Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics S. Corder (NRAO) A. Deller.
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Protoplanetary discs of isolated VLMOs discovered in the IPHAS survey Luisa Valdivielso (IAC) lalalala Collaborators: E. Martín, H. Bouy,
YSO/PMS disk types, time-scales and evolution
ALMA does Circumstellar Disks
Jessica L. Rosenberg George Mason University
Infall in High-mass Star-forming Clumps
NGC 1068 Torus Emission Turn-over
Some considerations on disk models
A Study of Accretion Disks Around Young Binary Star Systems
Dust Evolution & Planet Traps: Effects on Planet Populations
Ge/Ay133 SED studies of disk “lifetimes” &
Janie K. Hoormann University of Queensland 23 April 2019
Evolution of Gas in Circumstellar Disks
Presentation transcript:

The Nature of Transition Disks in Perseus, Taurus and Auriga Lucas Cieza 1, Matthias Schreiber 2, Gisela Romero 2, Jonathan Williams 1 Alberto Rebassa-Mansergas 1 University of Hawaii, 2 Universidad de Valparaiso, Chile, ABSTRACT: We have obtained mm wavelength photometry, high-resolution optical spectroscopy, and AO near-infrared imaging for a sample of 31 transition objects in the Perseus, Taurus, and Auriga molecular clouds. We use these data to estimate disk masses, multiplicity, and accretion rates in order to investigate the mechanisms potentially responsible for their inner holes. Following our previous studies in other regions, we combine disk masses, accretion rates and multiplicity data with other information, such as SED morphology and fractional disk luminosity to classify the disks as strong candidates for the following categories: grain-growth dominates disks, giant planet forming disk, photoevaporating disks, debris disks, and cicumbinary disks. Combining our sample of 31 transition disks with those from our previous studies results in a sample of 74 transition objects that have been selected, characterized, and classified in an homogenous way. We study this combined sample in the context of the current paradigm of the evolution and dissipation of protoplanetary disks and use its properties to constrain different aspects of the key processes driving their evolution. References Alexander R. et al. 2006, MNRAS 369, 216 Carpenter et al. 2006, ApJL, 651, 49 Cieza, L. et al. 2010, ApJ, 712, 925 Cieza, L. et al. 2012, submitted to ApJ Dullemond, C. & Dominik C. 2004, A&A 421,1075 Romero et al. 2012, submitted to ApJ Siess et al. 2000, A&A, 358, 593 RESULTS The results of our survey are described in Cieza et al. (2010;2012) and Romero et al. (2012). We find that transition disks are a very heterogeneous group of objects with a wide range of SED morphologies, disk luminosities, disk masses ( < 0.5 to 40 M jup ), and accretion rates (<10E11 to 10E7 M solar /yr). Since the properties of our transition disks point toward distinct processes driving the evolution of each disk, we have been able to identify very strong candidates for the following disk categories: circumbinary disks, grain-growth dominated disks, photoevaporating disks, debris disks, and (giant) planet-forming disks. Some SED examples are shown below. Fig 1. (Giant) Planet-forming disks: single accreting objects with little or no excess in the near-IR and rising SEDs in the mid-IR. Their SEDs imply the presence of sharp inner holes; however, these holes are not empty as circumstellar gas still flows onto the stars. These disks are relatively massive (few x M JUP ) and their properties are best explained by ongoing giant planet formation. Wide H profiles indicating accretion Fig 2. Grain growth dominated disks: Accreting objects with falling SEDs in the mid-IR. Their properties are best explained by grain growth and dust settling resulting in reduced dust opacities and small flaring angles with respect to those of typical disks around CTTSs (Dullemond & Dominik 2004). Wide H profiles indicating accretion Narrow H profiles indicating chromospheric origin Fig 3. Photoevaporating disks: non-accreting objects with very low disk masses ( ; e.g., higher than those of bright debris disks). They are consistent with primordial disks dissipating through photoevaporation from the central star (e.g., Alexander et al. 2006). Fig 4. Debris disks: non-accreting objects with very low disk masses (< 1 M JUP ) and low fractional disk luminosities (L disk /L star < ). Their properties are consistent with being young debris disks. The SED of typical CTTSs GOALS 1)Constrain the different processes driving disk evolution (e.g., accretion, grain growth, photoevaporation, planet formation and dynamical interactions) 2) Identify systems with strong evidence for ongoing giant planet formation to be followed-up in detail with ALMA and other facilities CONCLUSIONS 1) Massive circumbinary disks are exceedingly rare (objects such as those in Fig. 1 do not seem to be close binaries based on follow up aperture masking observations). 2) The incidence of (giant) planet forming disks candidates is much smaller than that of giant planets in the solar neighborhood (~5% vs ~20%). The giant planet disk candidates identified in our survey are likely to represent special cases, where multiple massive planets may be present. 3) Virtually all non-accreting objects (i.e.,WTTSs), including the photoevaporating disks in Fig 3., have very low disks masses (< 1 M JUP ). Since the disk masses at the time of the formation of the inner holes predicted by photoevaporation models are directly connected to photoevaporation rates, the lack of more massive WTTS disks favors small photoevaporation rates (~ M solar yr -1 ). 4) Debris disks and photoevaporating disk candidates are more common around hotter stars, consistent with the idea that primordial disks dissipate faster around more massive objects. 5)Grain growth-dominated disks account for ~40% of our sample of transition disks around K and M-type stars, confirming that grain-growth and dust settling play a major role in the evolution of primordial circumstellar disks. 6) A preliminary analysis of the age distribution of disks with signatures of dynamical clearing by recently formed giant planets reveals a lack of such objects among the youngest stars in the sample. This favors core accretion as the main planet formation mechanism and a 2-3 Myr formation timescale. 7) Transition disks are excellent laboratories to study disk evolution and planet formation and thus prime targets for detailed follow-up studies with ALMA and other facilities. Narrow H profiles indicating chromospheric origin Questions? The transition disk sample in the H-R diagram. All stars earlier than G5 have non-accreting disks, either photoevaporating disks or debris disk, consistent with the idea that primordial disks dissipate faster around more massive objects (Carpenter et al. 2006).There is a lack of (giant) planet-forming disk candidates among the youngest stars in the sample. This favors core accretion as the main planet formation mechanism and a 2-3 Myr formation timescale (isochrones are from Siess et al. 2000).