CEPC Injector Damping Ring

Slides:



Advertisements
Similar presentations
1 BROOKHAVEN SCIENCE ASSOCIATES NSLS-II ASAC-2007, April. 23, 2007 Injection System with a Booster in Separate Tunnel T. Shaftan for the NSLS-II team.
Advertisements

Design and Performance Expectation of ALPHA accelerator S.Y. Lee, IU 2/26/ Introduction 2. Possible CIS re-build and parameters 3. Issues in the.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
ALPHA Storage Ring Indiana University Xiaoying Pang.
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
The SPS as a Damping Ring Test Facility for CLIC March 6 th, 2013 Yannis PAPAPHILIPPOU CERN CLIC Collaboration Working meeting.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Injection System Update S. Guiducci (LNF) XVII SuperB Workshop La Biodola, Isola d'Elba, May 29 th 5/29/111.
CEPC parameter choice and partial double ring design
CEPC APDR Study Zhenchao LIU
Design study of CEPC Alternating Magnetic Field Booster
100km CEPC parameter and lattice design
CEPC parameter optimization and lattice design
Status of the CLIC main beam injectors
Cavity-beam interaction and Longitudinal beam dynamics for CEPC DR&APDR 宫殿君
CEPC injector high field S-band accelerating structure design and R&D
Luminosity Optimization for FCC-ee: recent results
Injector Chain General and more about p-RCS
Optimization of CEPC Dynamic Aperture
Status of CEPC lattice design
SuperB project. Injection scheme design status
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
Beam Loading Effect in CEPC APDR
CEPC-SppC Accelerator CDR Copmpletion at the end of 2017
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
CEPC Booster Design Progress (Low field)
The new 7BA design of BAPS
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
CEPC partial double ring scheme and crab-waist parameters
CEPC parameter optimization and lattice design
Interaction region design for the partial double ring scheme
CEPC partial double ring scheme and crab-waist parameters
LHC (SSC) Byung Yunn CASA.
CEPC Injector positron source
ILC 3.2 km DR design based on FODO lattice (DMC3)
ILC 3.2 km DR design based on FODO lattice (DMC3)
CEPC parameter optimization and lattice design
Design study of CEPC Alternating Magnetic Field Booster
Design study of CEPC Alternating Magnetic Field Booster
CEPC DA optimization with downhill Simplex
Design study of CEPC Alternating Magnetic Field Booster
CEPC Injector positron source
Design study of CEPC Alternating Magnetic Field Booster
Update of DA Study for the CEPC Partial Double Ring Scheme
CEPC APDR SRF considerations(4) -LEP Cavity Voltage &BBU
CEPC parameter and DA optimization
Update of Lattice Design for CEPC Main Ring
CEPC Partial Double Ring Parameter Update
CEPC injector beam dynamics
CEPC optics and booster optics
Update of Lattice Design for CEPC Main Ring
Lattice design for double ring scheme of CEPC main ring
CEPC Injector Linac beam dynamics
CEPC injector beam dynamics
Update of lattice design for CEPC main ring
Lattice design and dynamic aperture optimization for CEPC main ring
Lattice design for CEPC
Kicker and RF systems for Damping Rings
Kicker specifications for Damping Rings
Injection design of CEPC
CEPC SRF Parameters (100 km Main Ring)
CEPC injector beam dynamics
Parameters Changed in New MEIC Design
RF Parameters for New 2.2 km MEIC Design
Multi-Ion Injector Linac Design – Progress Summary
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
CEPC Parameter /DA optimization with downhill Simplex
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

CEPC Injector Damping Ring Cai Meng, Dou Wang, Jingru Zhang, Dianjun Gong, Jiyuan Zhang, Jie Gao CEPC CDR internal review, Feb 10, 2018 . A415, IHEP.

Outline Introduction of CEPC linac Damping Ring design Summary Parameters layout Damping Ring design Why Parameters and layout ECS/BCS Summary

Introduction CEPC linac Linac design principles Simplicity High Availability (necessary hot-standby backups,10%-20%) and Reliability meet requirements of Booster Parameter Symbol Unit Value e- /e+ beam energy Ee-/Ee+ GeV 10 Repetition rate frep Hz 100 e- /e+ bunch population Ne-/Ne+   >9.4×109 nC >1.5 Energy spread (e- /e+ ) σE <2×10-3 Emittance (e- /e+ ) εr   nm < 120 e- beam energy on Target 4 e- bunch charge on Target Length R&D Positron source ECS/ shorter bunch length Positron source/DR

Introduction CEPC linac Emittance: RMS 300 nm@6GeV  300nm@10GeV  120nm@10GeV  ? @10GeV 3500mm-mrad 5800mm-mrad 2350 mm-mrad Positron source Capture emittance

Introduction CEPC linac Accelerating tube Emittance Aperture: 25 mm Norm. RMS. Emittance 2500 mm-mrad Energy: >200 MeV Positron yield Ne+/Ne- ~=0.55 [-6°,14°,235 MeV,265 MeV] Emittance Bunch charge Collimation 120 nm Only energy cutoff ∆𝐸<15 MeV Deceleration Acceleration SuperKEKB commissioning results D1 A1 SuperKEKB

Damping Ring Why Smaller emittance requirement possibility and update potential Damping Ring for positron linac Emittance budget for Linac: One-bunch-per-pulse Enough margin with high transmission efficiency Decrease beam loss at low energy part (collimation) 100 Hz kicker?  Reliability Emittance for booster Easy injection design and high efficiency Beam lifetime Damping time at high energy(?) CEPC Accelerator CDR mini-review  Strongly Suggesttion @ Katsunobu Oide @Dou Wang

Damping Ring Preliminary design Energy 1.1 GeV SuperKEKB DR: CSR DR V1.0 Unit Value Energy GeV 1.1 Circumference M 58.5 Repetition frequency Hz 100 Bending radius 3.6 Dipole strength B0 T 1.01 U0 keV 35.8 Damping time x/y/z Ms 12/12/6 0 % 0.049 0 mm.mrad 302 Nature z mm 7 (23ps) Extract z inj 2500 ext x/y 716/471 inj /ext 0.5/0.07 Energy acceptance by RF 1.0 fRF MHz 650 VRF MV 1.8 Energy 1.1 GeV SuperKEKB DR: CSR Repetition frequency 100 Hz 10ms One bunch

Damping Ring Lattice FODO length (m) 2.4 Phase per cell 60 @Dou Wang FODO length (m) 2.4 Phase per cell 60 Dipole length (m) 0.71 Dipole strength (T) 1.0 Quadrupole length (m) 0.2 Quadrupole strength (m-2) 4.1 Sextupole length (m) 0.06

Damping Ring Lattice

Damping Ring DA @Dou Wang Red:7 times injected beam size (rms)

Damping Ring RF parameters SC cavity and NC cavity @Dianjun Gong SCRF NCRF Circumference [m] 58.5 Beam energy [GeV] 1.1 SR loss/ turn [keV] 35.8 Revolution frequency [MHz] 5.12 SR power / beam [W] 550.4 Momentum compactor 7.82E-02 Beam current [mA] 15.4 Bunch charge [nC] 3 Number of bunches per revolution 1 RF voltage [MV] 1.8 RF frequency [MHz] 650 RF wave length [m] 0.461 Bucket length [ns] 1.538 Harmonic number 127 Revolution time [ns] 195.1 Bunch population [1E10] 1.88 Natrue Bunch length [mm] 7 RF energy acceptance [%] Acc. Phase [deg] 88.86 Syn. Tune 0.010 Synchrotron oscillation period [us] 19.3 Longitudinal damping time [ms] 6.0 SC cavity and NC cavity Because of the small beam current and beam power, choose 4-cell 650MHz NC cavity. This cavity is scaled from 5- cell 500MHz HERA-type cavity.

Damping Ring RF parameters Damping ring lattice @Dianjun Gong SCRF NCRF Type of Cavity NCRF(HERA-type) number of cell/ cavity 1 4 Cavity effective length [m] 0.23 0.92 RF section length [m] Cavity number 2 Cavity voltage [MV] 1.8 0.9 Cavity Acc. Gradient [MV/m] 7.83 0.98 Q0 1.00E+10 29500 R/Q [Ohm] 103 440 Input power/ cavity [W] 550 62679 Pb [W] Pc/ cavity [W] 3 62404 Coupling Coefficient 176 1.01 Optimal QL 5.68E+07 2.92E+04 Cavity bandwidth at optimal QL [Hz] 11 2.2E+04 Detuning angle [deg] -88.86 -12.45 Filling time [us] 2.78E+04 14.3 Optimal detuning at optimal QL [Hz] -287.49 -2452.99 Cavity stored energy [J] 7.7 0.5 Damping ring lattice 4 1m-long spaces for RF 2 4-cell NC cavity. Acc. gradient is 1MV/m Input power is 63kW

Damping Ring Instability Coherent synchrotron radiation High energy Larger momentum compaction Longer bunch length Electron Cloud Instability

Damping Ring ECS/BCS Injection (DR) Extraction (Linac) Small energy spread Large bunch length Energy compression system (ECS) Extraction (Linac) small bunch length: 7mm 1 mm Energy spread <1% R56: -600mm Bunch compression system (BCS)

Damping Ring Chicane C-Chicane Rectangular dipole Bending angle: θ Bend radius: ρ Length: a, b

Damping Ring Chicane bend radius ρ Unit Value m 3.7 bending angle degree 25 a 0.5 b 0.6 Dx mm 1049 R56 -684 H 0.926 L 7.855

Positron Linac

Summary Damping ring is new addition in injector for smaller emittance requirement possibility and update potential. Preliminary damping ring design is proposed. ECS and BCS is considered. Further study is necessary and needed.