High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis  Danika L. Batiste, B.Sc, Alexandra.

Slides:



Advertisements
Similar presentations
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L.
Advertisements

Whole joint MRI assessment of surgical cartilage repair of the knee: Cartilage Repair OsteoArthritis Knee Score (CROAKS)  F.W. Roemer, A. Guermazi, S.
X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
MRI protocols for whole-organ assessment of the knee in osteoarthritis
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
T1ρ relaxation time of the meniscus and its relationship with T1ρ of adjacent cartilage in knees with acute ACL injuries at 3T  R.I. Bolbos, Ph.D., T.M.
Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study  F.W. Roemer, T. Neogi,
Imaging following acute knee trauma
Changes in the T2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle.
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort  W. Wirth, M.S., M.-P. Hellio.
Imaging of non-osteochondral tissues in osteoarthritis
7th International Workshop on Osteoarthritis Imaging report: “imaging in OA – now is the time to move ahead”  A. Guermazi, F. Eckstein, D. Hunter, F.
Reliability of an efficient MRI-based method for estimation of knee cartilage volume using surface registration  J.L. Jaremko, M.D., Ph.D., R.W.T. Cheng,
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography  D.D. McErlain, M.Sc., C.T.G. Appleton,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Computer-aided quantification of focal cartilage lesions using MRI: Accuracy and initial arthroscopic comparison  Keh-Yang Lee, Ph.D., Jeffrey N. Masi,
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
Positron emission tomography with 18F-FDG in osteoarthritic knee
Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score)  D.J. Hunter, A. Guermazi, G.H. Lo, A.J. Grainger,
Knee joint ultrasonography of the ACLT rabbit experimental model of osteoarthritis: relevance and effectiveness in detecting meniscal lesions  C. Boulocher,
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L.
18F-FDG PET-CT and MRI co-registered knee assessment after ACL transection in an in vivo canine model  M. Menendez, D. Clark, K. Binzel, B. Hettlich,
In vivo contrast-enhanced micro MR-imaging of experimental osteoarthritis in the rabbit knee joint at 7.1T1 1 This work is supported by BMBF, Leitprojekt.
Quantitative assessment of articular cartilage morphology via EPIC-μCT
The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse  S.S. Glasson, B.V.Sc., T.J. Blanchet, B.S., E.A.
The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee  C.G. Peterfy, M.D., Ph.D., E.
Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis  S. Amin,
Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo.
L. A. MacFarlane, H. Yang, J. E. Collins, A. Guermazi, M. H. Jones, E
Volumetric and semiquantitative assessment of MRI-detected subchondral bone marrow lesions in knee osteoarthritis: a comparison of contrast-enhanced and.
Whole joint MRI assessment of surgical cartilage repair of the knee: Cartilage Repair OsteoArthritis Knee Score (CROAKS)  F.W. Roemer, A. Guermazi, S.
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
S. Reichenbach, M. D. , A. Guermazi, M. D. , J. Niu, M. B. B. S. , D
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
M. K. Javaid, J. A. Lynch, I. Tolstykh, A. Guermazi, F. Roemer, P
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Bone-seeking superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic resonance imaging of bone turnover in early osteoarthritis  A. Panahifar,
Validation of a 40MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model  Mathieu P. Spriet, D.V.M., Christiane.
D. J. Hunter, D. P. Beavers, F. Eckstein, A. Guermazi, R. F. Loeser, B
Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy  Y. Song, M.S., J.M. Greve, M.S., D.R. Carter,
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis – part II: bone mineral density assessment  M. Bouchgua, D.M.V., K.
T. Nozaki, Y. Kaneko, H. Yu, K. Kaneshiro, R. Schwarzkopf, T. Hara, H
M. R. Doschak, Ph. D. , J. M. LaMothe, Ph. D. , D. M. L. Cooper, B. Sc
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis – part I  M. Bouchgua, D.M.V., K. Alexander, D.M.V., M.Sc., Dipl. A.C.V.R.,
DGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study  M. Rutgers, L.W. Bartels, A.I. Tsuchida,
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
D. Hayashi, F.W. Roemer, A. Guermazi  Osteoarthritis and Cartilage 
Comparison of 1-year vs 2-year change in regional cartilage thickness in osteoarthritis results from 346 participants from the Osteoarthritis Initiative 
Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study  D.
Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection  M.-A.
In vivo imaging of cartilage degeneration using μCT-arthrography
MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up 
X. Li, Ph. D. , C. Benjamin Ma, M. D. , T. M. Link, M. D. , D. -D
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Degenerative knee joint disease in mice lacking 3′-phosphoadenosine 5′-phosphosulfate synthetase 2 (Papss2) activity: a putative model of human PAPSS2.
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary.
Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis – data from the Osteoarthritis.
Correlation between the MR T2 value at 4
Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen.
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
Osteoarthritis year 2012 in review: imaging
Presentation transcript:

High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis  Danika L. Batiste, B.Sc, Alexandra Kirkley, M.D., FRCSC, Sheila Laverty, MVB, Dipl. ACVS, ECVS, Lisa M.F. Thain, M.D., FRCPC, Alison R. Spouge, M.D., FRCPC, Joseph S. Gati, M.Sc., Paula J. Foster, Ph.D., David W. Holdsworth, Ph.D.  Osteoarthritis and Cartilage  Volume 12, Issue 8, Pages 614-626 (August 2004) DOI: 10.1016/j.joca.2004.03.002

Fig. 1 Cylindrical calibration phantom including cortical bone mimicking material placed immediately adjacent to the patellar tendon included in each of the micro-CT scans. Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 2 Transverse micro-CT slices depicting the anatomical ROIs (A=anterior, C=central, P=posterior) as placed within the medial femoral condyle (a) and medial tibial plateau (b). Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 3 Coronal view of the cylindrical sample volumes of 1.5mm diameter that were placed within the subchondral cancellous bone of the medial (MC) and lateral (LC) femorotibial compartments. Cylindrical volumes extended to the epiphyseal growth plate (FEGP=femoral epiphyseal growth plate, TEGP=tibial epiphyseal growth plate). Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 4 Coronal (a) and sagittal (b) micro-CT slices of a normal rabbit depicting the narrowest femorotibial region as determined by 3-D examination of entire weight-bearing surface, and subsequent location of compartmental joint-space measurement. Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 5 Manual contour of new bone growth in each coronal image slice (a), to create a 3-D model of osteophytic bone for quantitative volumetric assessment (b). Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 6 An example of the MINC graphic user interface depicting the source volume (micro-CT) in column (a), target volume (SPGRfs) in column (b), and both source and target volumes overlapped in column (c). Volumes are of a normal rabbit visualized in the transverse (top), sagittal (central), and coronal (bottom) planes. Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 7 The eight anatomical landmarks used for image co-registration which were identifiable on both MR and micro-CT. Landmarks description: superior femoral intercondyle located centrally visible in sagittal section (a), inferior femoral intercondyle located centrally visible in sagittal section (b), medial tibial intercondylar tubercle located centrally visible in coronal section (c), lateral tibial intercondylar tubercle located centrally visible in coronal section (d), medial femoral anterior condyle located medially visible in transverse section (e), lateral femoral anterior condyle located laterally visible in transverse section (f), posterior tibial compartment located medially visible in sagittal section (g), posterior tibial compartment located laterally visible in sagittal section (h). Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 8 An example of the banding artifact (arrows) present in some SPGR fat-suppressed image volumes. Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 9 The averaged mean displacement values (calculated from root mean square) and standard error for completed (SPGRnofs–CT (D)) and extrapolated (SPGRfs–FSE (A), SPGRnofs–FSE (B), SPGRfs–CT (C), FSE–CT (E)) registrations of five rabbit specimens. Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 10 Sagittal slices obtained from micro-CT (a), SPGRfs (b), FSE (c), and SPGRnofs (d), demonstrating the ability to accurately co-register MR–CT and MR–MR volumes using MINC. Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)

Fig. 11 Coronal reformatted images of the micro-CT (a–d) and SPGRnofs (e–h) image volumes at various weeks (d,h) post-ACLT. Progressive cartilage damage (arrows) and osteophyte growth (open arrowheads) can be identified over the 12-week period, and may be 3-D mapped to simultaneous changes in adjacent subchondral bone. Osteoarthritis and Cartilage 2004 12, 614-626DOI: (10.1016/j.joca.2004.03.002)