Invariance in Property Testing

Slides:



Advertisements
Similar presentations
1 Property testing and learning on strings and trees Michel de Rougemont University Paris II & LRI Joint work with E. Fischer, Technion, F. Magniez, LRI.
Advertisements

Parikshit Gopalan Georgia Institute of Technology Atlanta, Georgia, USA.
PRG for Low Degree Polynomials from AG-Codes Gil Cohen Joint work with Amnon Ta-Shma.
December 2, 2009 IPAM: Invariance in Property Testing 1 Invariance in Property Testing Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read the TexPoint.
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Of 22 August 29-30, 2011 Rabin ’80: APT 1 Invariance in Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF. Read the TexPoint manual.
Many-to-one Trapdoor Functions and their Relations to Public-key Cryptosystems M. Bellare S. Halevi A. Saha S. Vadhan.
Property testing of Tree Regular Languages Frédéric Magniez, LRI, CNRS Michel de Rougemont, LRI, University Paris II.
List decoding Reed-Muller codes up to minimal distance: Structure and pseudo- randomness in coding theory Abhishek Bhowmick (UT Austin) Shachar Lovett.
Uniqueness of Optimal Mod 3 Circuits for Parity Frederic Green Amitabha Roy Frederic Green Amitabha Roy Clark University Akamai Clark University Akamai.
A UNIFIED FRAMEWORK FOR TESTING LINEAR-INVARIANT PROPERTIES ARNAB BHATTACHARYYA CSAIL, MIT (Joint work with ELENA GRIGORESCU and ASAF SHAPIRA)
Of 37 October 18, 2011 Invariance in Property Testing: Chicago 1 Invariance in Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF.
Of 39 February 22, 2012 Invariance in Property Testing: Yale 1 Invariance in Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF.
Probabilistically Checkable Proofs Madhu Sudan MIT CSAIL 09/23/20091Probabilistic Checking of Proofs TexPoint fonts used in EMF. Read the TexPoint manual.
Artur Czumaj Dept of Computer Science & DIMAP University of Warwick Testing Expansion in Bounded Degree Graphs Joint work with Christian Sohler.
Asaf Shapira (Georgia Tech) Joint work with: Arnab Bhattacharyya (MIT) Elena Grigorescu (Georgia Tech) Prasad Raghavendra (Georgia Tech) 1 Testing Odd-Cycle.
Testing the Diameter of Graphs Michal Parnas Dana Ron.
Sparse Random Linear Codes are Locally Decodable and Testable Tali Kaufman (MIT) Joint work with Madhu Sudan (MIT)
Locally testable cyclic codes Lászl ó Babai, Amir Shpilka, Daniel Štefankovič There are no good families of locally-testable cyclic codes over. Theorem:
6/20/2015List Decoding Of RS Codes 1 Barak Pinhas ECC Seminar Tel-Aviv University.
Michael Bender - SUNY Stony Brook Dana Ron - Tel Aviv University Testing Acyclicity of Directed Graphs in Sublinear Time.
On Proximity Oblivious Testing Oded Goldreich - Weizmann Institute of Science Dana Ron – Tel Aviv University.
EXPANDER GRAPHS Properties & Applications. Things to cover ! Definitions Properties Combinatorial, Spectral properties Constructions “Explicit” constructions.
Yet another algorithm for dense max cut - go greedy Claire Mathieu Warren Schudy (presenting) Brown University Computer Science SODA 2008.
1 Algorithmic Aspects in Property Testing of Dense Graphs Oded Goldreich – Weizmann Institute Dana Ron - Tel-Aviv University.
Some 3CNF Properties are Hard to Test Eli Ben-Sasson Harvard & MIT Prahladh Harsha MIT Sofya Raskhodnikova MIT.
Of 29 12/09/2014 Invariance in Property 1 Two Decades of Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF. Read.
September 20, 2010 Invariance in Property Testing 1 Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Of 38 July 29, 2011 Invariance in Property Testing: EPFL 1 Invariance in Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF. Read.
March 20-24, 2010 Babai-Fest: Invariance in Property Testing 1 Invariance in Property Testing Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read.
January 8-10, 2010 ITCS: Invariance in Property Testing 1 Invariance in Property Testing Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read the.
Of 28 Probabilistically Checkable Proofs Madhu Sudan Microsoft Research June 11, 2015TIFR: Probabilistically Checkable Proofs1.
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Of 29 August 4, 2015SIAM AAG: Algebraic Codes and Invariance1 Algebraic Codes and Invariance Madhu Sudan Microsoft Research.
Strong list coloring, Group connectivity and the Polynomial method Michael Tarsi, Blavatnik School of Computer Science, Tel-Aviv University, Israel.
The Quasi-Randomness of Hypergraph Cut Properties Asaf Shapira & Raphael Yuster.
Limits of Local Algorithms in Random Graphs
Succinct representation of codes with applications to testing Elena Grigorescu Tali Kaufman Madhu Sudan.
Polynomials Emanuele Viola Columbia University work partially done at IAS and Harvard University December 2007.
Probabilistically Checkable Proofs Madhu Sudan MIT CSAIL.
Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols Emanuele Viola, IAS (Work partially done during postdoc at Harvard)
Complexity and Efficient Algorithms Group / Department of Computer Science Testing the Cluster Structure of Graphs Christian Sohler joint work with Artur.
A Kernel Approach for Learning From Almost Orthogonal Pattern * CIS 525 Class Presentation Professor: Slobodan Vucetic Presenter: Yilian Qin * B. Scholkopf.
Testing Low-Degree Polynomials over GF(2) Noga AlonSimon LitsynMichael Krivelevich Tali KaufmanDana Ron Danny Vainstein.
Of 40 May 23-28, 2011 Bertinoro: Testing Affine-Invariant Properties 1 Testing Affine-Invariant Properties Madhu Sudan Microsoft TexPoint fonts used in.
Of 29 April 8, 2016 Two Decades of Property Testing 1 Madhu Sudan Harvard TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Tali Kaufman (Bar-Ilan)
On Sample Based Testers
Algebraic Property Testing:
Locality in Coding Theory II: LTCs
Dana Ron Tel Aviv University
Locality in Coding Theory
Polynomial Norms Amir Ali Ahmadi (Princeton University) Georgina Hall
Sum of Squares, Planted Clique, and Pseudo-Calibration
Pseudorandom bits for polynomials
Local Decoding and Testing Polynomials over Grids
Algebraic Codes and Invariance
Local Error-Detection and Error-correction
RS – Reed Solomon List Decoding.
Locally Decodable Codes from Lifting
The Curve Merger (Dvir & Widgerson, 2008)
Beer Therapy Madhu Ralf Vote early, vote often
Algebraic Property Testing
Robust PCPs of Proximity (Shorter PCPs, applications to Coding)
On the effect of randomness on planted 3-coloring models
General Strong Polarization
Low-Degree Testing Madhu Sudan MSR Survey … based on many works
Locality in Coding Theory II: LTCs
Testing Affine-Invariant Properties
Day 5 – Introduction to Proofs
Presentation transcript:

Invariance in Property Testing Madhu Sudan MIT Joint work with Tali Kaufman (IAS). Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing Goal: “Efficiently” determine if some “data” “essentially” satisfies some given “property”. Formalism: Data: Property: Efficiently: Essentially: f : D ! R g i v e n a s o r c l D ¯ n i t e , b u h g . R p o s l y m a G i v e n b y F µ f : D ! R g o ( D ) q u e r i s n t f . E v O 1 ! M u s t a c e p i f 2 F O k o ¼ g . Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing Distance: Definition: Notes: ± ( f ; g ) = P r x 2 D [ 6 ] F m i n ¼ ² · . F i s ( q ; ® ) - l o c a y t e b f 9 u r h p 2 w n j 6 ¸ ¢ ± . q - l o c a y t e s b i m p 9 ® > = O ( 1 ) W k r n g : j f 2 F w h . Dec. 31, 2007 Invariance in Property Testing

Property Testing (Pictorially) U n i v e r s f : D ! R g F M u s t a c e p O k t o a c e p M u s t r e j c w . h p Dec. 31, 2007 Invariance in Property Testing

Example: Pre-election Polling Domain = Population Range = Property: Essentially: Efficiency? f ; 1 g F = f u n c t i o s w h m a j r y 1 M u s t r e j c w . h p i f P x 2 D [ ( ) = 1 ] · ¡ ² C a n t e s w k l y i h ~ O ( 1 = ² 2 ) q u r . o ® b d Dec. 31, 2007 Invariance in Property Testing

Modern Day Example: Testing Linearity Domain = Range = Property: Theorem [Blum,Luby,Rubinfeld ’89]: Test: V e c t o r s p a F n 2 F i e l d 2 F = l i n e a r f u c t o s . , ( x ) h ; j 2 g L i n e a r t y s 3 - l o c b . P i c k x ; y 2 F n u f o r m l . A e p t ® ( ) + = Dec. 31, 2007 Invariance in Property Testing

Property Testing: Abbreviated History Prehistoric: Statistical sampling E.g., “Majority = 1?” Linearity Testing [BLR’90], Multilinearity Testing [Babai, Fortnow, Lund ’91]. Graph/Combinatorial Property Testing [Goldreich, Goldwasser, Ron ’94]. E.g., Is a graph “close” to being 3-colorable. Algebraic Testing [GLRSW,RS,FS,AKKLR,KR,JPSZ] Is multivariate function a polynomial (of bounded degree). Graph Testing [Alon-Shapira, AFNS, Borgs et al.] Characterizes graph properties that are testable. Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing Quest for this talk What makes a property testable? In particular for algebraic properties: Current understanding: Low-degree multivariate functions are testable. Different proofs for different cases. Linear functions Low-degree polynomials Higher degree polynomials over Higher degree polynomials over other fields F 2 Dec. 31, 2007 Invariance in Property Testing

Necessary Conditions for Testability One-sided error and testability: Constraint: Conclusion: Testability implies Constraints. ¡ S u p o s e f i r j c t d b y a k - q 1 . n x ; : 2 D L ( ) = ® ¡ T h e n f o r v y u c t i g 2 F , ( x 1 ) ; : b k 6 = ® . C = h x 1 ; : k i S ( R g s a t i ¯ e C f h ( x 1 ) ; : k 2 S F v r y . Dec. 31, 2007 Invariance in Property Testing

Necessary Conditions for Testability One-sided error and testability: Constraint: Conclusion: Testability implies Constraints. ¡ S u p o s e f i r j c t d b y a k - q 1 . n x ; : 2 D L ( ) = ® ¡ T h e n f o r v y u c t i g 2 F , ( x 1 ) ; : b k 6 = ® . C = h x 1 ; : k i S ( R g s a t i ¯ e C f h ( x 1 ) ; : k 2 S F v r y . Dec. 31, 2007 Invariance in Property Testing

Constraints, Characterizations, Testing Strong testing: Conclusion: Testability implies Local Characterizations. Example: E v e r y f 6 2 F j c t d b s o m k - l a n i . S h z 9 C 1 ; : , ¯ f µ F n 2 ! g i s l e a r ® o x ; y , t ¯ C w h = + S 1 . Dec. 31, 2007 Invariance in Property Testing

Characterizations Sufficient? NO! [Ben-Sasson, Harsha, Raskhodnikova] Random 3-locally characterized error-correcting codes (“Expander Codes”) are not o(D)-locally testable. Property: Criticism: Random constraints too “asymmetric”. Perhaps should consider more “symmetric” properties. D = [ n ] ; R f 1 g F s e t o u c i h a y m r d 3 - 2 l . Dec. 31, 2007 Invariance in Property Testing

Invariance & Property testing Invariances (Automorphism groups): Hope: If Automorphism group is “large” (“nice”), then property is testable. F o r p e m u t a i n ¼ : D ! , s - v f 2 l ± . A u t ( F ) = f ¼ j i s - n v a r g o m p d e c . Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing Examples Majority: Graph Properties: Matrix Properties: Have lots of symmetries – do they suffice? Algebraic Properties: What symmetries do they have? Will focus on this today. ¡ A u t g r o p = S D ( f l ) . ¡ E a s y F c t : I f A u ( ) = S D h e n i p o l R ; 1 ² - b . ¡ A u t . g r o p i v e n b y a m f c s [ F N S , B l ] h Dec. 31, 2007 Invariance in Property Testing

Algebraic Properties & Invariances Automorphism groups? Additional restriction: Linearity Question: Are Linear, Linear-Invariant, Locally Characterized Properties Testable? D = F n , R ( L i e a r t y o w - d g M u l ) O r D = K ¶ F , R ( u a l - B C H ) ( K ; F ¯ n i t e l d s ) L i n e a r t s f o m d . ¼ ( x ) = A w h 2 F £ (Linear-Invariant) f ; g 2 F a n d ® ¯ i m p l e s + Dec. 31, 2007 Invariance in Property Testing

Linear-Invariance & Testability Question: Are Linear, Linear-Invariant, Locally Characterized Properties Testable? Why? Unifies previous results on Prop. Testing. (Will show it also is non-trivial extension) Nice family of 2-transitive group of symmetries. Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron] : Linear code with k-local constraint and 2-transitive group of symmetries must be testable. Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing Our Results Theorem 1: Theorem 2: Other stuff: Study of Linear-invariant Properties. F µ f K n ! g l i e a r , - v t k o c y h z d m p s ( ; ) b . F µ f K n ! g l i e a r , ± - v t h s k o c m p ( ; ) y b . Dec. 31, 2007 Invariance in Property Testing

Linear Invariant Properties Dec. 31, 2007 Invariance in Property Testing

Examples of Linear-Invariant Families ¡ P o l y n m i a s F [ x 1 ; : ] f d e g r t ¡ T r a c e s o f P l y i n K [ x 1 ; : ] d g t m ¡ ( T r a c e s o f ) H m g n u p l y i d ¡ F 1 + 2 , w h e r a l i n - v t . P o y m s u p d b g ; 3 5 7 Dec. 31, 2007 Invariance in Property Testing

What Dictates Locality of Characterizations? ¡ P r e c i s l o a t y n u d : D p - f g . E x m F b + j h v k w ¡ F o r a ± n e - i v t f m l y d c ( s ) b h g ¡ F o r s m e l i n a - v t f , c b u h g d . E x a m p l e : K = F 7 ; 1 + 2 o y f d g r t s 6 u n i 3 . D ( ) ­ L c · 4 9 Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing Analysis Ingredients Monomial Extraction: Monomial Spread: E . g , x y 2 + z 4 F i m p l e s x 5 2 F i m p l e s 4 y ; 3 a o n ( f c h r ) g S u ± c e s f o r a n - i v t m l . F , d ¯ h g p b y w k Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing Local Testing Dec. 31, 2007 Invariance in Property Testing

Key Notion: Formal Characterization ¡ F i s f o r m a l y c h t e z d 9 n g C = ( x 1 ; : k S ) u ± ¼ 2 A . T h e o r m : I f F i s a l y c t z d b k - n ( w ) . Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing BLR (and our) analysis Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing BLR Analysis: Outline ² H a v e f s . t P r x ; y [ ( ) + 6 = ] ± < 1 2 W n o h w c l m g F ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . ² I f c l o s e t F h n g w i b a d . ² B u t i f n o c l s e ? g m a y v b q d ¯ ! ² S t e p s : ¡ S t e p : P r o v f c l s g ¡ S t e p 1 : P r o v m s l i k y w h n g a j . ¡ S t e p 2 : P r o v h a g i s n F . Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing BLR Analysis: Step 0 ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . C l a i m : P r x [ f ( ) 6 = g ] · 2 ± ¡ L e t B = f x j P r y [ ( ) 6 + ] ¸ 1 2 g ¡ P r x ; y [ l i n e a t s j c 2 B ] ¸ 1 ) P r x [ 2 B ] · ± ¡ I f x 6 2 B t h e n ( ) = g Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing x ( y ) BLR Analysis: Step 1 ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . ² S u p o s e f r m x , 9 t w q a l y i k v . P b n d h c ? ² I f w e i s h t o g l n a r , d u c . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] · 4 ± Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing x ( y ) BLR Analysis: Step 1 ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . ² S u p o s e f r m x , 9 t w q a l y i k v . P b n d h c ? ² I f w e i s h t o g l n a r , d u c . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] · 4 ± Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing BLR Analysis: Step 1 V o t e x ( y ) ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] · 4 ± f ( y ) ¡ f ( x + y ) ? f ( z ) f ( y + z ) ¡ f ( y + 2 z ) ¡ f ( x + z ) ¡ f ( 2 y + z ) f ( x + 2 y z ) P r o b . R w / c l u m n s - z e · ± Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing BLR Analysis: Step 1 V o t e x ( y ) ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] · 4 ± f ( y ) ¡ f ( x + y ) ? f ( z ) f ( y + z ) ¡ f ( y + 2 z ) ¡ f ( x + z ) ¡ f ( 2 y + z ) f ( x + 2 y z ) P r o b . R w / c l u m n s - z e · ± Dec. 31, 2007 Invariance in Property Testing

BLR Analysis: Step 2 (Similar) f ± < 1 2 , t h n 8 x ; y g ( ) + = P r o b . R w / c l u m n s - z e · 4 ± g ( x ) g ( y ) ¡ g ( x + y ) f ( z ) f ( y + z ) ¡ f ( y + 2 z ) ¡ f ( x + z ) ¡ f ( 2 y + z ) f ( x + 2 y z ) Dec. 31, 2007 Invariance in Property Testing

Our Analysis: Outline ² f s . t P r [ h ( x ) ; : i 2 V ] = ± ¿ ² D e 1 ) ; : k i 2 V ] = ± ¿ ² D e ¯ n g ( x ) = ® t h a m i z s P r f L j 1 [ ; 2 : k V ] ² S t e p s : ¡ S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. ¡ ¡ S t e p 2 : P r o v h a g i s n F . Dec. 31, 2007 Invariance in Property Testing

Our Analysis: Outline ² f s . t P r [ h ( x ) ; : i 2 V ] = ± ¿ ² D e 1 ) ; : k i 2 V ] = ± ¿ ² D e ¯ n g ( x ) = ® t h a m i z s P r f L j 1 [ ; 2 : k V ] S a m e s b f o r ² S t e p s : ¡ S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. ¡ ¡ S t e p 2 : P r o v h a g i s n F . Dec. 31, 2007 Invariance in Property Testing

Invariance in Property Testing x ( L ) Matrix Magic? ² D e ¯ n g ( x ) = ® t h a m i z s P r f L j 1 [ ; 2 : k V ] L e m a : 8 x , P r ; K [ V o t ( ) 6 = ] · 2 k ¡ 1 ± L ( x 2 ) L ( x k ) ¢ x K ( x 2 ) ? . K ( x k ) Dec. 31, 2007 Invariance in Property Testing

? Matrix Magic? L ( x ) ¢ L ( x ) x K ( x ) . K ( x ) ² W a n t m r k 2 ) ¢ L ( x k ) x K ( x 2 ) ? . K ( x k ) ² W a n t m r k e d o w s b c i . ² S u p o s e x 1 ; : ` l i n a r y d t h m .

Matrix Magic? ` L ( x ) ¢ L ( x ) x K ( x ) ` . K ( x ) ² S u p o s e Fill with random entries Matrix Magic? Fill so as to form constraints Linear algebra implies final columns are also constraints. ` L ( x 2 ) ¢ L ( x k ) x K ( x 2 ) ` . K ( x k ) ² S u p o s e x 1 ; : ` l i n a r y d t h m . Dec. 31, 2007

Matrix Magic? ` L ( x ) ¢ L ( x ) x K ( x ) ` . K ( x ) ² S u p o s e Fill with random entries Matrix Magic? Fill so as to form constraints Linear algebra implies final columns are also constraints. ` L ( x 2 ) ¢ L ( x k ) x K ( x 2 ) ` . K ( x k ) ² S u p o s e x 1 ; : ` l i n a r y d t h m . Dec. 31, 2007

Invariance in Property Testing Conclusions Linear/Affine-invariant properties testable if they have local constraints. Gives clean generalization of linearity and low-degree tests. Future work: What kind of invariances lead to testability (from characterizations)? Dec. 31, 2007 Invariance in Property Testing