Dibaryon production and structure

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Zijin Guo University of Hawaii (Representing BES Collaboration) Quarkonium Working Group ’04, IHEP Beijing October 13, 2004 Study of  c Decays at BES.
Spectroscopy at the Particle Threshold H. Lenske 1.
Study of few-body problems at WASA Wasa-at-Cosy. Content General overview General overview –  decays – dd   0 –  -mesic helium The ABC effect The.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Mikhail Bashkanov Dibaryons at COSY Wasa-at-COSY.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Photodisintegration of Few-Body Nuclei Ron Gilman Rutgers / Jefferson Lab What have we learned? What might we learn? Jefferson Lab User Group The Next.
Sixth International Conference on Perspectives in Hadronic Physics Hard Photodisintegration of a proton Pair May 2008 (Miramare - Trieste, Italy)
Hadrons in the Nuclear Medium. I. QCD dynamics of Hadron-Hadron Interaction I. QCD dynamics of Hadron-Hadron Interaction IV. Protons in the Superdense.
Mikhail Bashkanov Encounters with Di-Baryons from the ABC-effect to a Resonance in the Proton-Neutron System Wasa-at-COSY.
A discovery of the Di-baryon state with Wasa-at-COSY
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
New Interpretation of the ABC Effect in Two-Pion Production in NN collisions Maria Platonova Lomonosov Moscow State University The 22 nd European Conference.
Dan Watts (Edinburgh), Igor Strakovsky (GWU) and the CLAS Collaboration Daria Sokhan New Measurement of Beam Asymmetry from Pion Photoproduction on the.
Generalized Dalitz Plot analysis of the near threshold pp → ppK + K - reaction in view of the K + K - interaction Excited QCD, Stara Lesna, 4th February.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
1 On extraction of the total photoabsorption cross section on the neutron from data on the deuteron  Motivation: GRAAL experiment (proton, deuteron) 
Electromagnetic probes MAMI, Jefferson Lab & MAX-Lab Daniel Watts University of Edinburgh.
Nstars: Open Questions Nstars: Open Questions L. Tiator, Institut für Kernphysik, Universität Mainz  Introduction  Roper and S 11  the role of the D.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Total photoabsorption on quasi free nucleons at 600 – 1500 MeV N.Rudnev, A.Ignatov, A.Lapik, A.Mushkarenkov, V.Nedorezov, A.Turinge for the GRAAL collaboratiion.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
Meson Photoproduction with Polarized Targets   production a)  0 at threshold b) Roper and P 11 (1710)   production a) S 11 -D 13 phase rotation.
BLINDBILD Resonance Multiplets in the Two-Baryon System --- Dibaryons Revisited MesonNet Meeting Prague, June , 2013 Heinz Clement Fachbereich Physik.
The d* dibaryon structure and the hidden color channel effect Jia-lun Ping, Hong-xia Huang Dept. of Physics, Nanjing Normal University Fan Wang Dept. of.
Weak decay of  in nuclear medium FCPPL-2015, USTC, April 8-12, 2015 Institute of High Energy Physics Qiang Zhao Institute of High Energy Physics, CAS.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Simultaneous photo-production measurement of the  and  mesons on the nucleons at the range 680 – 1500 MeV N.Rudnev, V.Nedorezov, A.Turinge for the GRAAL.
CELSIUS-WASA,WASA-at-COSY: two-pion production in NN collisions T. Skorodko, Physikalisches Institut, Univ.Tubingen.
Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen.
The pp→pp  0  0 reaction and its limiting case, the fusion to quasibound, in search of ABC effect T. Skorodko, University Tuebingen for CELSIUS-WASA.
Double-Pionic Fusion in Nucleon Collisions on Few Body Systems - The ABC Effect and its Possible Origin Wasa-at-Cosy Celsius Wasa.
Fabien Zehr Double π photoproduction Glasgow 28 March 2006 Double π photoproduction at threshold and in the second resonance region With Crystal Ball and.
6-quark state nucleon (dibaryon) D N N G~ MeV
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
Double Ks0 Photoproduction off the proton at CLAS
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Center for Nuclear Study, University of Tokyo
Remarks on the hidden-color component
New observations and Multiquark Candidates at BESII
JLab6: Cluster structure connects to high-momentum components and internal quark modification of nuclei Short-Range Correlations (SRCs) dominated by np.
Mainz: Drechsel, Tiator Taipei: Guan Yeu Chen, SNY
Study of the kaonic nuclear clusters at DAΦNE: the AMADEUS experiment
In search of K+K- molecule
The dibaryon d* in quark models
Weak Interactions in the Nucleus II
Study of Strange Quark in the Nucleon with Neutrino Scattering
Decoding the riddle of Y(4260) and Zc(3900) Qiang Zhao
N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)
Search for f-N Bound State in Jefferson Lab Hall-B
Dibaryons at CLAS Mikhail Bashkanov.
d*, a quark model perspective
In-medium properties of the omega meson from a measurement of
On a Search for -Mesic Nuclei at MAMI-C
Study of the 3He-η System in d-p Collisions
Shedding light on Hexaquarks
N* Program at COSY April 19, 2009 | Hans Ströher (FZ-Jülich)
The hidden-color component in d* dibaryon?
Wasa-at-Cosy The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin.
Helicity dependence of g n ® Nπ(π) and the GDH integral on the neutrom
The np -> d p0 reaction measured with g11 data
Hexaquarks under the microscope
Supernarrow dibarions
New States Containing Charm at BABAR
Some Nuclear Physics with Solar Neutrinos
f- meson production in pN collisions close to threshold
Presentation transcript:

Dibaryon production and structure Mikhail Bashkanov

Total cross section pn  d00 “d* resonance” 70 MeV  NN*(1440) P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

𝑑 ∗ (2380) dibaryon I(Jp) = 0(3+) Δ Δ 𝚪 𝒅 ∗ =𝟕𝟎 𝐌𝐞𝐕≪ 𝚪 𝚫𝚫 =𝟐𝟒𝟎 𝑴𝒆𝑽 𝚪 𝒅 ∗ =𝟕𝟎 𝐌𝐞𝐕≪ 𝚪 𝚫𝚫 =𝟐𝟒𝟎 𝑴𝒆𝑽 u u u d d d Threshold I(Jp) = 0(3+) 80 MeV d* Δ Δ 𝑴 𝒅 ∗ =𝟐.𝟑𝟖 𝑮𝒆𝑽≈𝟐 𝑴 𝚫 −𝟖𝟎 𝑴𝒆𝑽

Dibaryon: hadronic decays PRL 106 (2011) 242302 PLB 721 (2013) 229 WASA data 𝑑 𝜋 0 𝜋 0 𝑑 𝜋 + 𝜋 − pn  d*(2380) 𝑝𝑛 𝑝𝑝 𝜋 − 𝜋 0 𝑝𝑛 𝜋 0 𝜋 0 𝑝𝑛 𝜋 + 𝜋 − PRL 112 (2014) 202301 PRC 90, (2014) 035204 d* PRC 88 (2013) 055208 PLB 743 (2015) 325 d* d*

𝑑 ∗ (2380) decay branches 𝒅 ∗ decay channel Branching ratio, % 𝑝𝑛 12(3) 𝑑 𝜋 0 𝜋 0 14(1) 𝑑 𝜋 + 𝜋 − 23(2) 𝑝𝑛 𝜋 + 𝜋 − 30(5) 𝑝𝑛 𝜋 0 𝜋 0 12(2) 𝑝𝑝 𝜋 0 𝜋 − 6(1) 𝑛𝑛 𝜋 0 𝜋 + 𝑁𝑁𝜋 0(<9)  Eur.Phys.J. A51 (2015) 7, 87

d* Internal Structure

d* internal structure  Hexaquark Molecule Diquark dominated Meson assisted -dressed 

𝑑 ∗ (2380) - Deltaron? L=0 Δ Δ

Deltaron: the width quest

Deltaron: the width quest

Deltaron: the width quest

Deltaron: the width quest M Δ = 𝑀 𝑑 ∗ 2 2 − 𝑞 Δ 2 The mass of the bound Δ in the Deltaron Δ momentum in the Deltaron M Δ = 𝑀 𝑑 ∗ 2 only if q Δ =0 q Δ =0 only if the size of the Deltaron is ∞ For R 𝑑 ∗ =0.9𝑓𝑚, Γ 𝑑 ∗ =2 Γ Δ =70 𝑀𝑒𝑉 see A. Gal, Phys.Lett. B769 (2017) 436 for details

Fluffy vs compact molecules Long life due to small Wave Function overlap Long life due to large Wave Function overlap High Fermi momentum  small Phase space

Nearly complete overlap Deuteron vs Deltaron size~ 1 𝑚 𝐸 𝐵 𝐷𝑒𝑙𝑡𝑎𝑟𝑜𝑛 𝐷𝑒𝑢𝑡𝑒𝑟𝑜𝑛 = 𝑚 𝑁 𝐸 𝐷𝑒𝑢𝑡𝑒𝑟𝑜𝑛 𝑚 Δ 𝐸 𝑑 ∗ ~ 1 7 𝑅 𝑑𝑒𝑢𝑡𝑒𝑟𝑜𝑛 ~2.2 𝑓𝑚  𝑅 ΔΔ ~0.3 𝑓𝑚 Nearly complete overlap

𝑑 ∗ size and width F. Huang et al, Chin.Phys. C39 (2015) 7, 071001 A. Gal, Phys.Lett. B769 (2017) 436 F. Huang et al,  Chin.Phys. C39 (2015) 7, 071001

Effective degrees of freedom Fan Wang et al. 1711.01445 When the two clusters are well separated (s → ∞), the two physical bases, colorless ΔΔ and hidden color CC, are orthogonal. When the two clusters are merged into one cluster (s → 0), the two physical bases are the same. Possible 6q configuration

Possible 𝑑 ∗ internal structure ΔΔ Threshold (2464 MeV) 𝚫 𝚫 𝑫−𝒘𝒂𝒗𝒆 fluffy compact 𝚫 𝚫 𝑺−𝒘𝒂𝒗𝒆 80 MeV 80 MeV 𝟔𝒒+𝚫 𝚫 𝑺−𝒘𝒂𝒗𝒆 compact d*(2380) fluffy 𝐍𝚫𝝅 NΔ𝜋 Threshold (2311 MeV)

𝑑 ∗ in-medium ΔΔ Threshold (2464 MeV) NΔ𝜋 Threshold (2311 MeV) 𝚫 𝚫 𝑫−𝒘𝒂𝒗𝒆 fluffy compact 𝚫 𝚫 𝑺−𝒘𝒂𝒗𝒆 80 MeV 80 MeV 𝟔𝒒+𝚫 𝚫 𝑺−𝒘𝒂𝒗𝒆 compact d*(2380) fluffy 𝐍𝚫𝝅 NΔ𝜋 Threshold (2311 MeV)

Possible 𝑁Δ𝜋 configuration in 𝑑 ∗ 82% 𝐍𝐍𝝅 𝐍𝚫 18% 𝐍𝐍 82% 𝐍𝐍𝝅𝝅 𝐍𝚫𝝅 18% 𝐍𝐍𝝅 𝚿 𝑵𝚫𝝅 𝟐 ~𝟓⋅𝑩𝒓( 𝒅 ∗ →𝐍𝐍𝝅)

𝑑 ∗ →𝑁𝑁𝜋 decay in experiment 𝑝𝑝→𝑝𝑛 𝜋 + 𝑝𝑝→𝑝𝑝 𝜋 0 Pure isovector (I=1) 𝑝𝑛→𝑝𝑝 𝜋 − 𝑝𝑛→𝑝𝑛 𝜋 0 Mixed (I=1& I=0) Predominantly isovector Interested in isoscalar part only 𝜎 𝑁𝑁→𝑁𝑁𝜋 𝐼=0 =3(2 𝜎 𝑝𝑛→𝑝𝑝 𝜋 − − 𝜎 𝑝𝑝→𝑝𝑝 𝜋 0 ) Proton beam Deuteron target 𝑝𝑑→𝑝𝑝 𝜋 − + p spectator 𝑝𝑑→𝑝𝑝 𝜋 0 + n spectator

𝑑 ∗ →𝑁𝑁𝜋 decay in experiment 𝑁𝑁→𝑁𝑁𝜋 isoscalar cross section 𝜎 𝑁𝑁→𝑁𝑁𝜋 𝐼=0 =3(2 𝜎 𝑝𝑛→𝑝𝑝 𝜋 − − 𝜎 𝑝𝑝→𝑝𝑝 𝜋 0 ) PLB 774 (2017) 599-607  Systematical errors!!!! Same beam Same detector Same deuteron target Two protons in final state measured in the same kinematics Br( 𝑑 ∗ →𝑁𝑁𝜋)<9% - upper limit Likely to be close to 0

𝑑 ∗ →𝑑𝜋𝜋 decay and D-wave ΔΔ component pn  d*  DD  dpp π Δ p 𝑁 1 d 𝑁 2 n Δ π 𝑝 Δ 2 − 𝑝 Δ 2 = 𝑝 𝑁 1 + 𝑝 𝜋 1 − 𝑝 𝑁 2 + 𝑝 𝜋 2 = 𝑝 𝑁 1 − 𝑝 𝑁 2 + 𝑝 𝜋 1 − 𝑝 𝜋 2 ≈ 𝑝 𝜋 1 − 𝑝 𝜋 2 𝑝 𝑁 1 ≈ 𝑝 𝑁 1 𝑝 Δ 2 − 𝑝 Δ 2 ≈ 𝑝 𝜋 1 − 𝑝 𝜋 2 ↔ 𝑀 𝜋𝜋

d*(2380) internal structure and the ABC effect Δ Δ Δ Δ L=2 M. Bashkanov et al, Nucl.Phys. A958 (2017) 129

𝑑 ∗ (2380) Hexaquark ? ≈33% ≈66% ≈10% ≈90% 0.7 fm Δ L=2 Narrow width Branching ratios Dalitz plots Δ Δ ≈90% ≈10% 𝑀 𝜋𝜋 , see Nucl.Phys. A958 (2017) 129-146 F. Huang et al,  Chin.Phys. C39 (2015) 7, 071001

𝑑 ∗ size d*(2380) Transition form factor Charge distribution * d*(2380) d Transition form factor Charge distribution Internal structure

d*(2380) in photoproduction? 𝜋 0  p 𝜋 0 d*  d* d d d n 𝛾𝑑→𝑑 𝜋 0 𝜋 0 𝛾𝑑→𝑑 𝜋 0 𝜋 0 Conventional Background M. Egorov, A. Fix, Nucl.Phys. A933 (2015) 104-113 𝑑 ∗ M. Guenther, Hadron 2017 T. Ishikawa et al.  Phys.Lett. B772 (2017) 398

𝑑 ∗ and beam asymmetry Σ 𝑑 ∗ 𝜎 ⊥ − 𝜎 ∥ 𝜎 ⊥ + 𝜎 ∥ = 𝑃 𝛾 𝚺𝑐𝑜𝑠2𝜙 E2 transition ( 𝟐 + ) M3 transition ( 𝟑 + ) E4 transition ( 𝟒 + )  𝑑 ∗ p d n 𝜎 ⊥ − 𝜎 ∥ 𝜎 ⊥ + 𝜎 ∥ = 𝑃 𝛾 𝚺𝑐𝑜𝑠2𝜙 H. Arenhoevel, M. Sanzone “Photodisintegration of the deuteron”

Beam asymmetry Σ 𝜎 ⊥ − 𝜎 ∥ 𝜎 ⊥ + 𝜎 ∥ = 𝑃 𝛾 𝚺𝑐𝑜𝑠2𝜙  Δ 𝜋 M1 transition ( 𝟏 + ) or E2 transition ( 𝟐 + ) p N 𝜎 ⊥ − 𝜎 ∥ 𝜎 ⊥ + 𝜎 ∥ = 𝑃 𝛾 𝚺𝑐𝑜𝑠2𝜙 E2/M1 ratio for the 𝛾𝑁→Δ 𝐸2 𝑀1 = 1 2 𝑘 𝑀 𝑁 𝑄 𝑧𝑧 𝑁Δ 𝜇 𝑁Δ T. Watabe et al. hep-ph 9502244 R. Beck et al. (MAMI-A2) Phys.Rev. C61 (2000) 035204 Analysis of beam asymmetry 𝐸2 𝑀1 =2.5%

Deuteron photodisintegration, Σ  Σ~ 𝐽=2 𝐵 𝐽 𝑃 𝐽 2 (𝑐𝑜𝑠Θ) PRC 26 (1982) 2358 d n 𝚺 E 𝛾 ~420−620MeV 𝒄𝒐𝒔 𝚯 𝒏 ∗

Deuteron photodisintegration: beam asymmetry Σ 𝑑 ∗ should be noticeable in 𝑃 6 2 H. Ikeda et al.Nucl. Phys. B 172 (1980) 509  p d n Σ~ 𝐽=2 𝐵 𝐽 𝑃 𝐽 2 (𝑐𝑜𝑠Θ) PRC 26 (1982) 2358

d*(2380) in photoproduction? R. Gilman and F. Gross nucl-th/0111015 (2001) d*  p T. Kamae, T. Fujita Phys. Rev. Lett. 38, Feb 1977, 471 d n H. Ikeda et al., Phys. Rev. Lett. 42, May 1979, 1321 I(Jp) = 0(3+) 𝐌=𝟐.𝟑𝟖 𝐆𝐞𝐕

The benchmark measurement Edinburgh polarimeter d* p 𝛾 d n Measure polarization of both proton and neutron ! Mikhail Bashkanov "Dibaryons"

Experiment 𝛾 𝑑→𝑝 𝑛 Target 𝜸 p 𝒏 Θ,𝜙,𝐸 p 𝚯 ′ ,𝝓′ Polarimeter

Recoil polarization at 90 degree proton Conventional background, Kang et al background+ d* H. Ikeda et al., Phys. Rev. Lett. 42, May 1979, 1321

Recoil polarization at 90 degree neutron proton Conventional background, Kang et al Very preliminary background+ d* background+ d* H. Ikeda et al., Phys. Rev. Lett. 42, May 1979, 1321

Recoil polarization at 90 degree neutron proton Very preliminary

𝒅 ∗ 𝒊𝒏 𝒏𝒖𝒄𝒍𝒆𝒂𝒓 𝒎𝒆𝒅𝒊𝒖𝒎

Nuclear matter at high density p d* n Mikhail Bashkanov "Dibaryons"

The d*(2380) in neutron stars a new degree of freedom? 𝑑 ∗ gets stable at 𝜌~2.8⋅ 𝜌 0 All decays are Pauli blocked Dibaryon matter? 𝑑 ∗ in nuclei? I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore arXiv:1706.09701v1

d*(2380) SU(3) multiplet Jp = 3+  * *  𝑑 ∗ (2380) 𝑀 𝑑 ∗ − 𝑀 Δ + 𝑀 Σ ∗ < 𝑀 𝑑 𝑠 ∗ ≤ 𝑀 Δ + 𝑀 Σ ∗ * 𝑑 𝑠 ∗ (2.53−2.60) * 𝑑 𝑠𝑠 ∗ (2.68−2.76)  𝑑 𝑠𝑠𝑠 ∗ (2.82−2.90)

Conclusion 𝑑 ∗ dibaryon is likely to be a very compact object The first hexaquark – 6q benchmark state Mass, Width, Branching Ratios 9 decay channels studied 𝑑 ∗ photo/electroproduction Size & structure 𝑑 𝑠 ∗ is the next in queue (9 SU3 𝑑 ∗ members to be discovered) Other hexaquarks and baryon-baryon molecules…

 * * 𝑑 ∗ (2380) Thank you 

Neutron stars EoS I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore arXiv:1706.09701v1

The d ∗ (2380) in neutron stars - a new degree of freedom? I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore arXiv:1706.09701v1

The d ∗ (2380) in neutron stars - a new degree of freedom? I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore arXiv:1706.09701v1

The d ∗ (2380) in neutron stars I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore arXiv:1706.09701v1 GW170817 from arXiv:1710.05938v1

𝑑 ∗ (2380) medium modifications? Trivial modifications: Fermi smearing Collision damping Δ N N Δ 𝑑 ∗ Δ BUT! Pauly blocked in infinite nuclear matter 𝒅 ∗ is stable! N

𝑑 ∗ (2380) medium modifications? 𝑑 ∗ interaction with nuclear matter Attractive/Repulsive? Mass change? Changes in size?

𝑑 ∗ in neutron stars 𝑑 ∗ →𝑛𝑛+ 𝑒 + + 𝜈 𝑒 𝜌>2.8 𝜌 0 𝑑 ∗ →𝑝𝑛 Urca cooling 𝑑 ∗ →𝑛𝑛+ 𝑒 + + 𝜈 𝑒 𝜌~2.8 𝜌 0 Neutron stars mergers 𝜌>2.8 𝜌 0 𝑑 ∗ →𝑝𝑛 𝑛𝑛→ 𝑑 ∗ + 𝑒 − + 𝜈 𝑒 Ejecta HMNS->black hole nucleosynthesis

The benchmark measurement Newly installed Edinburgh polarimeter p  d* d n Measure polarization of both proton and neutron ! Mikhail Bashkanov "Dibaryons"

Λ−Δ competition in neutron star Phys.Rev. C90 (2014) no.6, 065809

𝒅 ∗ →𝑵𝑵𝝅

𝑁𝑁→𝑁𝑁𝜋 isoscalar cross section 𝜎 𝑁𝑁→𝑁𝑁𝜋 𝐼=0 =3(2 𝜎 𝑝𝑛→𝑝𝑝 𝜋 − − 𝜎 𝑝𝑝→𝑝𝑝 𝜋 0 ) pp→𝑝𝑝 𝜋 0 np→𝑝𝑝 𝜋 − Complete cancellation of Δ resonance in isoscalar case

𝑁𝑁→𝑁𝑁𝜋 isoscalar cross section pp→𝑝𝑝 𝜋 0 np→𝑝𝑝 𝜋 −

𝑑 ∗ →𝑁𝑁𝜋 decay in experiment Br( 𝑑 ∗ →𝑁𝑁𝜋)<9% An upper limit Likely to be close to 0 Can be further reduced by careful PWA 𝑑 ∗ →𝑁𝑁𝜋 should have very distinctive angular distributions 𝜋 − P-wave p d* D-wave p

𝐴 𝑦 energy dependence at 83° SAID New SAID solutions P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014)

Dimensionless partial wave amplitudes Pole at (𝟐𝟑𝟖𝟎±𝟏𝟎)−𝒊(𝟒𝟎±𝟓) 𝑴𝒆𝑽 Dimensionless partial wave amplitudes Im SP14 SP07 Re 𝜖 3 3 𝐷 3 3 𝐺 3 Resonance in the pn system P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014)

Argand plot P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014)

Total pn cross-section Devlin et al, PRD8, 136 (73) LisowskI et al, PRL49, 255(82) SAID SP07 SAID new solution P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014)

NN vs ΔΔ Δ Δ p n Threshold ? p n Δ Δ 𝟏 𝑺 𝟎 I = 1, J =0 I = 3, J =0 𝟏 𝑺 𝟎 Z=+4 Δ Δ p n Threshold ? 66 keV 2.2 MeV p n 80 MeV deuteron d* Δ Δ I = 0, J =1 I = 0, J =3

Z=+4 dibaryon isospin coefficients 𝜋 p I 𝑝𝑝→ 𝜋 − 𝜋 − 𝑑 4+ → 𝜋 − 𝜋 − Δ ++ Δ ++ →𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − 𝟏 𝟐∙ 𝟏 𝟏𝟓 𝟐 𝑝𝑝→ 𝜋 + 𝜋 − 𝑑 2+ → 𝜋 + 𝜋 − Δ ++ Δ 0 →𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − 𝟏 𝟏𝟓 𝟐 𝑝𝑝→ 𝜋 + 𝜋 + 𝑑 0 → 𝜋 + 𝜋 + Δ + Δ − →𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 −

𝑝𝑝→𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − data 𝑑 4+ 𝑀 𝑝𝑝 𝜋 + 𝜋 + 𝑀 𝑝𝑝 𝜋 − 𝜋 − 𝑇 𝑝 =2.541 𝐺𝑒𝑉 𝑇 𝑝 =2.063 𝐺𝑒𝑉 𝑀 𝑝𝑝 𝜋 + 𝜋 + Double-Roper 𝑀 𝑝𝑝 𝜋 − 𝜋 − 𝑑 4+

Charge Z=+4 dibaryon upper limit 𝑇 𝑝 =2.063 𝐺𝑒𝑉 𝑇 𝑝 =2.541 𝐺𝑒𝑉 𝚪=𝟏𝟓𝟎 𝑴𝒆𝑽 𝚪=𝟏𝟎𝟎 𝑴𝒆𝑽 𝚪=𝟓𝟎 𝑴𝒆𝑽 20 nb of possible 𝑍=+4 dibaryon vs 1.500.000 nb of 𝑑 ∗ (2380)

𝑝𝑝→𝑝𝑝 2𝜋 + 2 𝜋 − total X-section

The d ∗ (2380) in neutron stars I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore arXiv:1706.09701v1 GW170817 from arXiv:1710.05938v1