Machine-Level Programming III: Procedures Sept 18, 2001

Slides:



Advertisements
Similar presentations
Machine-Level Programming III: Procedures Feb. 8, 2000 Topics IA32 stack Stack-based languages Stack frames Register saving conventions Creating pointers.
Advertisements

University of Washington Procedures and Stacks II The Hardware/Software Interface CSE351 Winter 2013.
Machine Programming – Procedures and IA32 Stack CENG334: Introduction to Operating Systems Instructor: Erol Sahin Acknowledgement: Most of the slides are.
University of Washington Last Time For loops  for loop → while loop → do-while loop → goto version  for loop → while loop → goto “jump to middle” version.
Machine-Level Programming III: Procedures Apr. 17, 2006 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables CS213.
1 Function Calls Professor Jennifer Rexford COS 217 Reading: Chapter 4 of “Programming From the Ground Up” (available online from the course Web site)
Machine-Level Programming III: Procedures Sept. 17, 2007 IA32 stack discipline Register saving conventions Creating pointers to local variablesx86-64 Argument.
– 1 – , F’02 ICS05 Instructor: Peter A. Dinda TA: Bin Lin Recitation 4.
Machine-Level Programming III: Procedures Jan 30, 2003
Assembly תרגול 8 פונקציות והתקפת buffer.. Procedures (Functions) A procedure call involves passing both data and control from one part of the code to.
Machine-Level Programming III: Procedures Sept. 15, 2006 IA32 stack discipline Register saving conventions Creating pointers to local variablesx86-64 Argument.
September 22, 2014 Pengju (Jimmy) Jin Section E
Stack Activation Records Topics IA32 stack discipline Register saving conventions Creating pointers to local variables February 6, 2003 CSCE 212H Computer.
Y86 Processor State Program Registers
Carnegie Mellon Introduction to Computer Systems /18-243, spring 2009 Recitation, Jan. 14 th.
1 Carnegie Mellon Stacks : Introduction to Computer Systems Recitation 5: September 24, 2012 Joon-Sup Han Section F.
Lee CSCE 312 TAMU 1 Based on slides provided by Randy Bryant and Dave O’Hallaron Machine-Level Programming III: Switch Statements and IA32 Procedures Instructor:
Ithaca College Machine-Level Programming IV: IA32 Procedures Comp 21000: Introduction to Computer Systems & Assembly Lang Spring 2013 * Modified slides.
Machine-Level Programming III: Switch Statements and IA32 Procedures Seoul National University.
University of Washington Today More on procedures, stack etc. Lab 2 due today!  We hope it was fun! What is a stack?  And how about a stack frame? 1.
Fabián E. Bustamante, Spring 2007 Machine-Level Programming III - Procedures Today IA32 stack discipline Register saving conventions Creating pointers.
Recitation 2 – 2/11/02 Outline Stacks & Procedures Homogenous Data –Arrays –Nested Arrays Mengzhi Wang Office Hours: Thursday.
Machine-Level Programming: X86-64 Topics Registers Stack Function Calls Local Storage X86-64.ppt CS 105 Tour of Black Holes of Computing.
Machine-Level Programming III: Procedures Topics IA32 stack discipline Register-saving conventions Creating pointers to local variables CS 105 “Tour of.
Machine-level Programming III: Procedures Topics –IA32 stack discipline –Register saving conventions –Creating pointers to local variables.
1 Procedure Call and Array. 2 Outline Data manipulation Control structure Suggested reading –Chap 3.7, 3.8.
F’08 Stack Discipline Aug. 27, 2008 Nathaniel Wesley Filardo Slides stolen from CMU , whence they were stolen from CMU CS 438.
University of Amsterdam Computer Systems – the instruction set architecture Arnoud Visser 1 Computer Systems The instruction set architecture.
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Carnegie Mellon Instructor: San Skulrattanakulchai Machine-Level Programming.
1 Assembly Language: Function Calls Jennifer Rexford.
IA32 Stack –Region of memory managed with stack discipline –Grows toward lower addresses –Register %esp indicates lowest stack address address of top element.
Section 5: Procedures & Stacks
A job ad at a game programming company
Reading Condition Codes (Cont.)
Machine-Level Programming 2 Control Flow
C function call conventions and the stack
CSCE 212 Computer Architecture
Conditional Branch Example
Recitation 2 – 2/11/02 Outline Stacks & Procedures
Introduction to Compilers Tim Teitelbaum
Recitation 2 – 2/4/01 Outline Machine Model
Machine-Level Programming III: Procedures
Carnegie Mellon Machine-Level Programming III: Switch Statements and IA32 Procedures / : Introduction to Computer Systems 7th Lecture, Sep.
Chapter 3 Machine-Level Representation of Programs
Introduction to Assembly Language IA32
Machine-Level Programming 1 Introduction
Machine-Level Programming III: Switch Statements and IA32 Procedures
Y86 Processor State Program Registers
Instructors: Majd Sakr and Khaled Harras
Machine-Level Programming 4 Procedures
IA32 Stack Discipline From Last Time
Machine-Level Programming III: Procedures /18-213/14-513/15-513: Introduction to Computer Systems 7th Lecture, September 18, 2018.
IA32 Stack Discipline From Last Time
Carnegie Mellon Machine-Level Programming III: Procedures : Introduction to Computer Systems October 22, 2015 Instructor: Rabi Mahapatra Authors:
Condition Codes Single Bit Registers
Roadmap C: Java: Assembly language: OS: Machine code: Computer system:
Machine-Level Programming 2 Control Flow
Machine-Level Programming 2 Control Flow
Today Control flow if/while/do while/for/switch
Machine-Level Programming 2 Control Flow
Machine Level Representation of Programs (IV)
Machine-Level Programming: Introduction
Ithaca College Machine-Level Programming VII: Procedures Comp 21000: Introduction to Computer Systems & Assembly Lang Spring 2017.
Chapter 3 Machine-Level Representation of Programs
Machine-Level Programming II: Control Flow
Machine-Level Representation of Programs (x86-64)
“Way easier than when we were students”
Ithaca College Machine-Level Programming VII: Procedures Comp 21000: Introduction to Computer Systems & Assembly Lang Spring 2017.
Presentation transcript:

Machine-Level Programming III: Procedures Sept 18, 2001 15-213 “The course that gives CMU its Zip!” Machine-Level Programming III: Procedures Sept 18, 2001 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables class07.ppt

IA32 Stack Pushing Popping Stack “Bottom” Region of memory managed with stack discipline Register %esp indicates lowest allocated position in stack i.e., address of top element Pushing pushl Src Fetch operand at Src Decrement %esp by 4 Write operand at address given by %esp Popping popl Dest Read operand at address given by %esp Increment %esp by 4 Write to Dest Increasing Addresses Stack Grows Down Stack Pointer %esp Stack “Top”

Stack Operation Examples pushl %eax popl %edx 0x110 0x110 0x110 0x10c 0x10c 0x10c 0x108 123 0x108 123 0x108 123 0x104 213 %eax 213 %eax 213 %eax 213 %edx 555 %edx 555 %edx 213 %esp 0x108 %esp 0x104 %esp 0x108

Procedure Control Flow Use stack to support procedure call and return Procedure call: call label Push return address on stack; Jump to label Return address value Address of instruction beyond call Example from disassembly 804854e: e8 3d 06 00 00 call 8048b90 <main> 8048553: 50 pushl %eax Return address = 0x8048553 Procedure return: ret Pop address from stack; Jump to address

Procedure Call / Return Example 804854e: e8 3d 06 00 00 call 8048b90 <main> 8048553: 50 pushl %eax call 8048b90 ret 0x110 0x110 0x110 0x10c 0x10c 0x10c 0x108 123 0x108 123 0x108 123 0x104 0x8048553 %esp 0x108 %esp 0x104 %esp 0x108 %eip 0x804854e %eip 0x8048b90 %eip 0x8048553 %eip is program counter

Stack-Based Languages Languages that Support Recursion e.g., C, Pascal, Java Code must be “Reentrant” Multiple simultaneous instantiations of single procedure Need some place to store state of each instantiation Arguments Local variables Return pointer Stack Discipline State for given procedure needed for limited time From when called to when return Callee returns before caller does Stack Allocated in Frames state for single procedure instantiation

Call Chain Example Code Structure Call Chain yoo(…) { • yoo who(); } amI Call Chain yoo(…) { • who(); } who(…) { • amI(); } amI(…) { • amI(); } Procedure amI recursive

IA32 Stack Structure Stack Growth Stack Pointer Frame Pointer • yoo who amI • Stack Growth Toward lower addresses Stack Pointer Address of next available location in stack Use register %esp Frame Pointer Start of current stack frame Use register %ebp Increasing Addresses Stack Grows Frame Pointer %ebp Stack Pointer %esp Stack “Top”

IA32/Linux Stack Frame Callee Stack Frame (“Top” to Bottom) Parameters for called functions Local variables If can’t keep in registers Saved register context Old frame pointer Caller Stack Frame Return address Pushed by call instruction Arguments for this call Caller Frame Arguments Frame Pointer (%ebp) Return Addr Old %ebp Saved Registers + Local Variables Argument Build Stack Pointer (%esp)

Revisiting swap Resulting Stack int zip1 = 15213; int zip2 = 91125; void call_swap() { swap(&zip1, &zip2); } call_swap: • • • pushl $zip2 # Global Var pushl $zip1 # Global Var call swap • Resulting Stack void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } &zip2 &zip1 Rtn adr %esp

Revisiting swap swap: pushl %ebp movl %esp,%ebp pushl %ebx movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Set Up void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } Body Finish

swap Setup #1 Resulting Entering Stack Stack • %ebp • %ebp &zip2 yp xp Rtn adr %esp Rtn adr Old %ebp %esp swap: pushl %ebp movl %esp,%ebp pushl %ebx

swap Setup #2 Entering Stack Resulting Stack • %ebp • &zip2 yp &zip1 xp Rtn adr %esp Rtn adr Old %ebp %ebp %esp swap: pushl %ebp movl %esp,%ebp pushl %ebx

swap Setup #3 Entering Stack Resulting Stack • %ebp • &zip2 yp &zip1 xp Rtn adr %esp Rtn adr Old %ebp %ebp Old %ebx %esp swap: pushl %ebp movl %esp,%ebp pushl %ebx

Effect of swap Setup Entering Stack Resulting Stack • %ebp • Offset &zip2 12 yp &zip1 8 xp Rtn adr %esp 4 Rtn adr Old %ebp %ebp Old %ebx %esp swap: pushl %ebp movl %esp,%ebp pushl %ebx

swap Finish #1 swap’s Stack Observation • • Offset Offset 12 yp 12 yp 8 xp 8 xp 4 Rtn adr 4 Rtn adr Old %ebp %ebp Old %ebp %ebp -4 Old %ebx %esp -4 Old %ebx %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Observation Saved & restored register %ebx

swap Finish #2 swap’s swap’s Stack Stack • • Offset Offset 12 yp 12 yp 8 xp 8 xp 4 Rtn adr 4 Rtn adr Old %ebp %ebp Old %ebp %ebp -4 Old %ebx %esp %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret

swap Finish #3 swap’s swap’s Stack Stack • %ebp • Offset Offset 12 yp 8 xp 8 xp 4 Rtn adr 4 Rtn adr %esp Old %ebp %ebp %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret

swap Finish #4 swap’s Stack Exiting Stack Observation • %ebp • %ebp Offset 12 yp &zip2 8 xp &zip1 %esp 4 Rtn adr %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Observation Saved & restored register %ebx Didn’t do so for %eax, %ecx, or %edx

Register Saving Conventions When procedure yoo calls who:  yoo is the caller, who is the callee Can Register be Used for Temporary Storage? Contents of register %edx overwritten by who Conventions “Caller Save” Caller saves temporary in its frame before calling “Callee Save” Callee saves temporary in its frame before using yoo: • • • movl $15213, %edx call who addl %edx, %eax ret who: • • • movl 8(%ebp), %edx addl $91125, %edx ret

IA32/Linux Register Usage Surmised by looking at code examples Integer Registers Two have special uses %ebp, %esp Three managed as callee-save %ebx, %esi, %edi Old values saved on stack prior to using Three managed as caller-save %eax, %edx, %ecx Do what you please, but expect any callee to do so, as well Register %eax also stores returned value %eax Caller-Save Temporaries %edx %ecx %ebx Callee-Save Temporaries %esi %edi %esp Special %ebp

Recursive Factorial Complete Assembly .globl rfact .type rfact,@function rfact: pushl %ebp movl %esp,%ebp pushl %ebx movl 8(%ebp),%ebx cmpl $1,%ebx jle .L78 leal -1(%ebx),%eax pushl %eax call rfact imull %ebx,%eax jmp .L79 .align 4 .L78: movl $1,%eax .L79: movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Recursive Factorial int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1); return rval * x; } Complete Assembly Assembler directives Lines beginning with “.” Not of concern to us Labels .Lxx Actual instructions

Rfact Stack Setup Entering Stack x Rtn adr Caller %esp rfact: pushl %ebp movl %esp,%ebp pushl %ebx x Rtn adr Old %ebp %ebp 4 8 Old %ebx %esp -4 Caller Callee

Rfact Body Registers movl 8(%ebp),%ebx # ebx = x cmpl $1,%ebx # Compare x : 1 jle .L78 # If <= goto Term leal -1(%ebx),%eax # eax = x-1 pushl %eax # Push x-1 call rfact # rfact(x-1) imull %ebx,%eax # rval * x jmp .L79 # Goto done .L78: # Term: movl $1,%eax # return val = 1 .L79: # Done: Recursion int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1); return rval * x; } Registers $ebx Stored value of x $eax Temporary value of x-1 Returned value from rfact(x-1) Returned value from this call

Rfact Recursion x Rtn adr Old %ebp %ebp Old %ebx %esp x-1 %eax %ebx leal -1(%ebx),%eax pushl %eax x Rtn adr Old %ebp %ebp Old %ebx %esp x-1 %eax %ebx x Rtn adr Old %ebp %ebp Old %ebx %esp x-1 %eax %ebx call rfact

Rfact Result x Rtn adr Old %ebp %ebp Old %ebx %esp x-1 (x-1)! %eax Return from Call imull %ebx,%eax x Rtn adr Old %ebp %ebp Old %ebx %esp x-1 x! %eax %ebx

Rfact Completion 8 x 4 Rtn adr Old %ebp %ebp -4 Old %ebx -8 x-1 %esp Old %ebp %ebp -4 Old %ebx -8 x-1 %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret %eax x! %ebx x x %esp %eax x! %ebx Old %ebx

Pointer Code Recursive Procedure Top-Level Call void s_helper (int x, int *accum) { if (x <= 1) return; else { int z = *accum * x; *accum = z; s_helper (x-1,accum); } int sfact(int x) { int val = 1; s_helper(x, &val); return val; } Pass pointer to update location Uses tail recursion But GCC only partially optimizes it

Creating & Initializing Pointer Initial part of sfact _sfact: pushl %ebp # Save %ebp movl %esp,%ebp # Set %ebp subl $16,%esp # Add 16 bytes movl 8(%ebp),%edx # edx = x movl $1,-4(%ebp) # val = 1 8 x 4 Rtn adr Old %ebp %ebp -4 val = 1 -8 Unused -12 Using Stack for Local Variable Variable val must be stored on stack Need to create pointer to it Compute pointer as -4(%ebp) Push on stack as second argument -16 %esp int sfact(int x) { int val = 1; s_helper(x, &val); return val; }

Passing Pointer Calling s_helper from sfact Stack at time of call 8 x leal -4(%ebp),%eax # Compute &val pushl %eax # Push on stack pushl %edx # Push x call s_helper # call movl -4(%ebp),%eax # Return val • • • # Finish 4 Rtn adr Old %ebp %ebp -4 val = 1 -8 Unused -12 int sfact(int x) { int val = 1; s_helper(x, &val); return val; } -16 &val x %esp

Using Pointer void s_helper (int x, int *accum) { • • • • • • int z = *accum * x; *accum = z; } • • • movl %ecx,%eax # z = x imull (%edx),%eax # z *= *accum movl %eax,(%edx) # *accum = z Register %ecx holds x Register %edx holds accum Use access (%edx) to reference memory

Tail Recursion Tail Recursive Procedure General Form Top-Level Call int t_helper (int x, int val) { if (x <= 1) return val; return t_helper(x-1, val*x); } t_helper(x, val) { • • • return t_helper(Xexpr, Vexpr) } Top-Level Call Form Directly return value returned by recursive call Consequence Can convert into loop int tfact(int x) { return t_helper(x, 1); }

Removing Tail Recursion Optimized General Form Resulting Code t_helper(x, val) { start: • • • val = Vexpr; x = Xexpr; goto start; } int t_helper (int x, int val) { start: if (x <= 1) return val; val = val*x; x = x-1; goto start; } Effect of Optimization Turn recursive chain into single procedure No stack frame needed Constant space requirement Vs. linear for recursive version

Generated Code for Tail Recursive Proc. Optimized Form Code for Loop int t_helper (int x, int val) { start: if (x <= 1) return val; val = val*x; x = x-1; goto start; } # %edx = x # %ecx = val L53: # start: cmpl $1,%edx # x : 1 jle L52 # if <= goto done movl %edx,%eax # eax = x imull %ecx,%eax # eax = val * x decl %edx # x-- movl %eax,%ecx # val = val * x jmp L53 # goto start L52: # done: Registers $edx x $ecx val

Summary The Stack Makes Recursion Work Private storage for each instance of procedure call Instantiations don’t clobber each other Addressing of locals + arguments can be relative to stack positions Can be managed by stack discipline Procedures return in inverse order of calls IA32 Procedures Combination of Instructions + Conventions Call / Ret instructions Register usage conventions Caller / Callee save %ebp and %esp Stack frame organization conventions