3.3: Rational Functions and Their Graphs

Slides:



Advertisements
Similar presentations
Horizontal Vertical Slant and Holes
Advertisements

Warm Up Find the zeros of the following function F(x) = x2 -1
Horizontal Vertical Slant and Holes
Rational function A function  of the form where p(x) and q(x) are polynomials, with q(x) ≠ 0, is called a rational function.
3.6: Rational Functions and Their Graphs
LIAL HORNSBY SCHNEIDER
Section 5.2 – Properties of Rational Functions
Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.
4.4 Rational Functions Objectives:
1 Find the domains of rational functions. Find the vertical and horizontal asymptotes of graphs of rational functions. 2.6 What You Should Learn.
The exponential function f with base a is defined by f(x) = ax
5.1 Polynomial Functions Degree of a Polynomial: Largest Power of X that appears. The zero polynomial function f(x) = 0 is not assigned a degree.
9.3 Rational Functions and Their Graphs Rational Function – A function that is written as, where P(x) and Q(x) are polynomial functions. The domain of.
Rational Functions and Their Graphs
Copyright © 2014, 2010 Pearson Education, Inc. Chapter 2 Polynomials and Rational Functions Copyright © 2014, 2010 Pearson Education, Inc.
Rational Functions - Rational functions are quotients of polynomial functions: where P(x) and Q(x) are polynomial functions and Q(x)  0. -The domain of.
Copyright © 2011 Pearson Education, Inc. Rational Functions and Inequalities Section 3.6 Polynomial and Rational Functions.
Section 9.2/9.3 Rational Functions, Asymptotes, Holes.
Section 5.2 Properties of Rational Functions
Chapter 7 Polynomial and Rational Functions with Applications Section 7.2.
Rational Functions and Their Graphs
Lesson 3.5 – Finding the domain of a Rational Function To find the domain set the denominator to zero and solve for x. The domain will be all real number.
Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Rational Functions A function of the form where p(x) and q(x) are polynomial functions and q(x) ≠ 0. Examples: (MCC9-12.F.IF.7d)
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Alg 2 Warm Up – Wed (5/15)-Thurs (5/16) 1.List the possible roots. Then find all the zeros of the polynomial function. f(x) = x 4 – 2x 2 – 16x -15 Answers:
Copyright © Cengage Learning. All rights reserved. Polynomial And Rational Functions.
2-6 rational functions.  Lines l and m are perpendicular lines that intersect at the origin. If line l passes through the point (2,-1), then line m must.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Rational Functions Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as where p(x) and q(x)
Essential Question: How do you find intercepts, vertical asymptotes, horizontal asymptotes and holes? Students will write a summary describing the different.
Date: 1.2 Functions And Their Properties A relation is any set of ordered pairs. The set of all first components of the ordered pairs is called the domain.
Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Mrs.Volynskaya Ch.2.6 Rational Functions and Their Graphs.
Rational Functions. 6 values to consider 1)Domain 2)Horizontal Asymptotes 3)Vertical Asymptotes 4)Holes 5)Zeros 6)Slant Asymptotes.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Graph Sketching: Asymptotes and Rational Functions OBJECTIVES  Find limits.
Chapter 2 – Polynomial and Rational Functions 2.6/7 – Graphs of Rational Functions and Asymptotes.
 Find the horizontal and vertical asymptotes of the following rational functions 1. (2x) / (3x 2 +1) 2. (2x 2 ) / (x 2 – 1) Note: Vertical asymptotes-
4.5 Rational Functions  For a rational function, find the domain and graph the function, identifying all of the asymptotes.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Polynomial and Rational Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Quadratic Function A quadratic function is defined by a quadratic or second-degree polynomial. Standard Form
Graph Sketching: Asymptotes and Rational Functions
3.6 Graphs of Rational Functions
3.6 Rational Functions.
Aim: What are the rational function and asymptotes?
Professor of Mathematics
Rational Functions and Models
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
College Algebra Chapter 3 Polynomial and Rational Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Rational Functions and Their Graphs
8.2 Rational Functions and Their Graphs
Horizontal Vertical Slant and Holes
Copyright © Cengage Learning. All rights reserved.
Polynomial and Rational Functions
College Algebra Fifth Edition
3.6 Rational Functions.
3.3: Rational Functions and Their Graphs
Rational Functions A rational function is a function of the form where P and Q are polynomials. We assume that P(x) and Q(x) have no factor in common.
Rational Expressions and Functions
Section 5.2 – Properties of Rational Functions
Chapter 4: Rational, Power, and Root Functions
Chapter 4: Rational, Power, and Root Functions
Horizontal Vertical Slant and Holes
Horizontal Vertical Slant and Holes
Find the zeros of each function.
Properties of Rational Functions
Presentation transcript:

3.3: Rational Functions and Their Graphs Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as where p(x) and q(x) are polynomial functions and q(x)  0. The domain of a rational function is the set of all real numbers except the x-values that make the denominator zero. For example, the domain of the rational function is the set of all real numbers except 0, 2, and -5. This is p(x). This is q(x).

EXAMPLE: Finding the Domain of a Rational Function 3.3: Rational Functions and Their Graphs EXAMPLE: Finding the Domain of a Rational Function Find the domain of each rational function. a. Solution Rational functions contain division. Because division by 0 is undefined, we must exclude from the domain of each function values of x that cause the polynomial function in the denominator to be 0. a. The denominator of is 0 if x = 3. Thus, x cannot equal 3. The domain of f consists of all real numbers except 3, written {x | x  3}. more

EXAMPLE: Finding the Domain of a Rational Function 3.3: Rational Functions and Their Graphs EXAMPLE: Finding the Domain of a Rational Function Find the domain of each rational function. a. Solution Rational functions contain division. Because division by 0 is undefined, we must exclude from the domain of each function values of x that cause the polynomial function in the denominator to be 0. b. The denominator of is 0 if x = -3 or x = 3. Thus, the domain of g consists of all real numbers except -3 and 3, written {x | x  - {x | x  -3, x  3}. more

EXAMPLE: Finding the Domain of a Rational Function 3.3: Rational Functions and Their Graphs EXAMPLE: Finding the Domain of a Rational Function Find the domain of each rational function. a. Solution Rational functions contain division. Because division by 0 is undefined, we must exclude from the domain of each function values of x that cause the polynomial function in the denominator to be 0. c. No real numbers cause the denominator of to equal zero. The domain of h consists of all real numbers.

Rational Functions Arrow Notation 3.3: Rational Functions and Their Graphs Rational Functions Unlike the graph of a polynomial function, the graph of the reciprocal function has a break in it and is composed of two distinct branches. We use a special arrow notation to describe this situation symbolically: Arrow Notation Symbol Meaning x  a + x approaches a from the right. x  a - x approaches a from the left. x   x approaches infinity; that is, x increases without bound. x  -  x approaches negative infinity; that is, x decreases without bound.

Vertical Asymptotes of Rational Functions 3.3: Rational Functions and Their Graphs Vertical Asymptotes of Rational Functions Definition of a Vertical Asymptote The line x = a is a vertical asymptote of the graph of a function f if f (x) increases or decreases without bound as x approaches a. f (x)   as x  a + f (x)   as x  a - f a y x x = a f a y x x = a Thus, f (x)   or f(x)  -  as x approaches a from either the left or the right. more

Vertical Asymptotes of Rational Functions 3.3: Rational Functions and Their Graphs Vertical Asymptotes of Rational Functions Definition of a Vertical Asymptote The line x = a is a vertical asymptote of the graph of a function f if f (x) increases or decreases without bound as x approaches a. f (x)  -  as x  a + f (x)  -  as x  a - f a y x x = a x = a f a y x Thus, f (x)   or f(x)  -  as x approaches a from either the left or the right.

Vertical Asymptotes of Rational Functions 3.3: Rational Functions and Their Graphs Vertical Asymptotes of Rational Functions If the graph of a rational function has vertical asymptotes, they can be located by using the following theorem. Locating Vertical Asymptotes If is a rational function in which p(x) and q(x) have no common factors and a is a zero of q(x), the denominator, then x = a is a vertical asymptote of the graph of f.

Finding Vertical Asymptotes Example 1 If First simplify the function. Factor both numerator and denominator and cancel any common factors.

The asymptote(s) occur where the simplified denominator equals 0. The vertical line x=3 is the only vertical asymptote for this function. As the input value x to this function gets closer and closer to 3 the function itself looks more and more like the vertical line x=3.

Graph of Example 1 The vertical dotted line at x = 3 is the vertical asymptote

Finding Vertical Asymptotes Example 2 If Factor both the numerator and denominator and cancel any common factors. In this case there are no common factors to cancel.

The denominator equals zero whenever either This function has two vertical asymptotes, one at x = -2 and the other at x = 3

Graph of Example 2 The two vertical dotted lines at x = -2 and x = 3 are the vertical asymptotes

Horizontal Asymptotes of Rational Functions 3.3: Rational Functions and Their Graphs Horizontal Asymptotes of Rational Functions A rational function may have several vertical asymptotes, but it can have at most one horizontal asymptote. Definition of a Horizontal Asymptote The line y = b is a horizontal asymptote of the graph of a function f if f (x) approaches b as x increases or decreases without bound. f y x y = b x y f y = b f y x y = b f (x)  b as x   f (x)  b as x   f (x)  b as x  

Horizontal Asymptotes of Rational Functions 3.3: Rational Functions and Their Graphs Horizontal Asymptotes of Rational Functions If the graph of a rational function has a horizontal asymptote, it can be located by using the following theorem. Locating Horizontal Asymptotes Let f be the rational function given by The degree of the numerator is n. The degree of the denominator is m. If n < m, the x-axis (y = 0) is the horizontal asymptote of the graph of f. If n = m, the line y = is the horizontal asymptote of the graph of f. If n = m + 1, the quotient is in the form ax + b , and the line y = ax + b is called an oblique (or slant) asymptote. If n > m + 1, the graph of f has neither a horizontal asymptote or an oblique asymptote.

Finding Horizontal Asymptotes Example 3 If then there is a horizontal asymptote at the line y=0 because the degree of the numerator (2) is less than the degree of the denominator (3). This means that as x gets larger and larger in both the positive and negative directions (x → ∞ and x → -∞) the function itself looks more and more like the horizontal line y = 0

Graph of Example 3 The horizontal line y = 0 is the horizontal asymptote.

Finding Horizontal Asymptotes Example 4 If then because the degree of the numerator (2) is equal to the degree of the denominator (2) there is a horizontal asymptote at the line y=6/5. Note, 6 is the leading coefficient of the numerator and 5 is the leading coefficient of the denominator. As x→∞ and as x→-∞ g(x) looks more and more like the line y=6/5

Graph of Example 4 The horizontal dotted line at y = 6/5 is the horizontal asymptote.

f (-x) = f (x): y-axis symmetry f (-x) = -f (x): origin symmetry 3.3: Rational Functions and Their Graphs Strategy for Graphing a Rational Function Suppose that where p(x) and q(x) are polynomial functions with no common factors. 1. Determine whether the graph of f has symmetry. f (-x) = f (x): y-axis symmetry f (-x) = -f (x): origin symmetry 2. Find the y-intercept (if there is one) by evaluating f (0). 3. Find the x-intercepts (if there are any) by solving the equation p(x) = 0. 4. Find any vertical asymptote(s) by solving the equation q (x) = 0. 5. Find the horizontal asymptote (if there is one) using the rule for determining the horizontal asymptote of a rational function. 6. Plot at least one point between and beyond each x-intercept and vertical asymptote. 7. Use the information obtained previously to graph the function between and beyond the vertical asymptotes.

EXAMPLE: Graphing a Rational Function 3.3: Rational Functions and Their Graphs EXAMPLE: Graphing a Rational Function Solution Step 1 Determine symmetry: f (-x) = = = f (x): Symmetric with respect to the y-axis. Step 2 Find the y-intercept: f (0) = = 0: y-intercept is 0. Step 3 Find the x-intercept: 3x2 = 0, so x = 0: x-intercept is 0. Step 4 Find the vertical asymptotes: Set q(x) = 0. x2 - 4 = 0 Set the denominator equal to zero. x2 = 4 x = 2 Vertical asymptotes: x = -2 and x = 2. more

EXAMPLE: Graphing a Rational Function 3.4: Rational Functions and Their Graphs EXAMPLE: Graphing a Rational Function Solution Step 5 Find the horizontal asymptote: y = 3/1 = 3. Step 6 Plot points between and beyond the x-intercept and the vertical asymptotes. With an x-intercept at 0 and vertical asymptotes at x = 2 and x = -2, we evaluate the function at -3, -1, 1, 3, and 4. -5 -4 -3 -2 -1 1 2 3 4 5 7 6 Vertical asymptote: x = 2 Vertical asymptote: x = -2 Horizontal asymptote: y = 3 x-intercept and y-intercept x -3 -1 1 3 4 f(x) = The figure shows these points, the y-intercept, the x-intercept, and the asymptotes. more

EXAMPLE: Graphing a Rational Function 3.4: Rational Functions and Their Graphs EXAMPLE: Graphing a Rational Function Solution Step 7 Graph the function. The graph of f (x) is shown in the figure. The y-axis symmetry is now obvious. -5 -4 -3 -2 -1 1 2 3 4 5 7 6 Vertical asymptote: x = 2 Vertical asymptote: x = -2 Horizontal asymptote: y = 3 x-intercept and y-intercept -5 -4 -3 -2 -1 1 2 3 4 5 7 6 x = -2 y = 3 x = 2

EXAMPLE: Finding the Slant Asymptote of a Rational Function 3.3: Rational Functions and Their Graphs EXAMPLE: Finding the Slant Asymptote of a Rational Function Find the slant asymptotes of f (x) = Solution Because the degree of the numerator, 2, is exactly one more than the degree of the denominator, 1, the graph of f has a slant asymptote. To find the equation of the slant asymptote, divide x - 3 into x2 - 4x - 5: 1 -4 -5 3 -3 1 -1 -8 3 Remainder more

EXAMPLE: Finding the Slant Asymptote of a Rational Function 3.3: Properties of Rational Function and Their Graphs EXAMPLE: Finding the Slant Asymptote of a Rational Function Find the slant asymptotes of f (x) = Solution The equation of the slant asymptote is y = x - 1. Using our strategy for graphing rational functions, the graph of f (x) = is shown. -2 -1 4 5 6 7 8 3 2 1 -3 Vertical asymptote: x = 3 Slant asymptote: y = x - 1