Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway by María J. Bueno, Marta Gómez de Cedrón, Gonzalo Gómez-López, Ignacio Pérez de.

Slides:



Advertisements
Similar presentations
Genetic and Epigenetic Silencing of MicroRNA-203 Enhances ABL1 and BCR-ABL1 Oncogene Expression María J. Bueno, Ignacio Pérez de Castro, Marta Gómez de.
Advertisements

Apostolos Zaravinos and Constantinos C Deltas Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological.
Figure S1. Alignment of sequences from the 5′-end to the Sm binding site of reported genomic sequences (9-15) for HSUR 1. MicroRNA binding sites are.
-33 Red bar: tonsil tumour samples, n =14 x2 Green bar: tonsil normal samples, n = 9 x2 A B Supplementary Figure 1. A)Unsupervised HCL analysis was used.
Fig. 4. miR-326, miR-330, and miR-3099 bound to the GFAP 3'-UTR and regulated GFAP expression. (A) Schematic diagram of potential binding sequence (seed.
Inhibition of SOX17 by MicroRNA 141 and Methylation Activates the WNT Signaling Pathway in Esophageal Cancer  Yan Jia, Yunsheng Yang, Qimin Zhan, Malcolm.
Figure 1 miRNA expression in multiple sclerosis lesions
MiR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221 by Ai Kotani, Daon.
MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1β-induced catabolic effects in human articular chondrocytes  S.J. Park, E.J. Cheon,
IRES‐dependent translation is specifically abolished by an IRES point mutation. IRES‐dependent translation is specifically abolished by an IRES point mutation.
Volume 80, Issue 4, Pages (August 2011)
Matias A. Bustos, Shigeshi Ono, Diego M
MicroRNA-451 plays a role in murine embryo implantation through targeting Ankrd46, as implicated by a microarray-based analysis  Zhengyu Li, M.D., Jia.
by Hong Hao, Huiling Qi, and Manohar Ratnam
Sp1 Suppresses miR-3178 to Promote the Metastasis Invasion Cascade via Upregulation of TRIOBP  Hui Wang, Kai Li, Yu Mei, Xuemei Huang, Zhenglin Li, Qingzhu.
by Andrew G. Muntean, Liyan Pang, Mortimer Poncz, Steven F
Psoriasis Skin Inflammation-Induced microRNA-26b Targets NCEH1 in Underlying Subcutaneous Adipose Tissue  Louisa Cheung, Rachel M. Fisher, Natalia Kuzmina,
MiRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia by Christian Philipp Pallasch, Michaela.
Inhibition of SOX17 by MicroRNA 141 and Methylation Activates the WNT Signaling Pathway in Esophageal Cancer  Yan Jia, Yunsheng Yang, Qimin Zhan, Malcolm.
by Wu-Guo Deng, Ying Zhu, and Kenneth K. Wu
PLCG1 mutations in cutaneous T-cell lymphomas
Volume 11, Issue 5, Pages (May 2007)
Volume 13, Issue 6, Pages (June 2008)
by Gregory H. Underhill, David George, Eric G. Bremer, and Geoffrey S
The interferon regulatory factor ICSBP/IRF-8 in combination with PU
Volume 136, Issue 2, Pages (February 2009)
Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1 by Vanessa J. Craig, Sergio B.
Rose-Anne Romano, Barbara Birkaya, Satrajit Sinha 
Volume 135, Issue 1, Pages (July 2008)
Review Warm-Up What is the Central Dogma?
Loss of imprinting at the 14q32 domain is associated with microRNA overexpression in acute promyelocytic leukemia by Floriana Manodoro, Jacek Marzec, Tracy.
MiR‐199a directly targets ERBB2 and ERBB3, whereas miR‐125b targets ERBB3. miR‐199a directly targets ERBB2 and ERBB3, whereas miR‐125b targets ERBB3. (A)
Volume 21, Issue 6, Pages (June 2013)
Revealing Global Regulatory Perturbations across Human Cancers
The Translational Landscape of the Mammalian Cell Cycle
MiR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53 by Francisco Navarro, David Gutman, Eti Meire, Mario Cáceres,
Widespread Shortening of 3′UTRs by Alternative Cleavage and Polyadenylation Activates Oncogenes in Cancer Cells  Christine Mayr, David P. Bartel  Cell 
Volume 48, Issue 5, Pages (December 2012)
Revealing Global Regulatory Perturbations across Human Cancers
Volume 16, Issue 7, Pages (August 2016)
Mutations in Human ARF Exon 2 Disrupt Its Nucleolar Localization and Impair Its Ability to Block Nuclear Export of MDM2 and p53  Yanping Zhang, Yue Xiong 
MicroRNA Control in the Immune System: Basic Principles
Prediction of Mammalian MicroRNA Targets
Expression of Alternative Ago2 Isoform Associated with Loss of microRNA-Driven Translational Repression in Mouse Oocytes  Jacob W. Freimer, Raga Krishnakumar,
Inhibition of SOX17 by MicroRNA 141 and Methylation Activates the WNT Signaling Pathway in Esophageal Cancer  Yan Jia, Yunsheng Yang, Qimin Zhan, Malcolm.
Volume 39, Issue 3, Pages (August 2010)
Volume 18, Issue 1, Pages (July 2013)
Volume 19, Issue 8, Pages (August 2011)
Volume 18, Issue 6, Pages (December 2015)
MicroRNA Destabilization Enables Dynamic Regulation of the miR-16 Family in Response to Cell-Cycle Changes  Olivia S. Rissland, Sue-Jean Hong, David P.
SUMO-1 Modification Represses Sp3 Transcriptional Activation and Modulates Its Subnuclear Localization  Sarah Ross, Jennifer L Best, Leonard I Zon, Grace.
Transcriptional Repression of miR-34 Family Contributes to p63-Mediated Cell Cycle Progression in Epidermal Cells  Dario Antonini, Monia T. Russo, Laura.
USP2a-dependent miRs deregulation modulates MYC expression.
Negative Regulation of Tumor Suppressor p53 by MicroRNA miR-504
Volume 6, Issue 3, Pages (March 2016)
Ulf Andersson Ørom, Finn Cilius Nielsen, Anders H. Lund  Molecular Cell 
Molecular Therapy - Nucleic Acids
Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor by Gauthami Jalagadugula, Lawrence.
The lncRNA PDIA3P Interacts with miR-185-5p to Modulate Oral Squamous Cell Carcinoma Progression by Targeting Cyclin D2  Cheng-Cao Sun, Ling Zhang, Guang.
Dissection of miRNA Pathways Using Arabidopsis Mesophyll Protoplasts
Volume 22, Issue 9, Pages (September 2014)
The Expression of MicroRNA-598 Inhibits Ovarian Cancer Cell Proliferation and Metastasis by Targeting URI  Feng Xing, Shuo Wang, Jianhong Zhou  Molecular.
Boyan Bonev, Peter Stanley, Nancy Papalopulu  Cell Reports 
Regulation of KSHV Lytic Switch Protein Expression by a Virus-Encoded MicroRNA: An Evolutionary Adaptation that Fine-Tunes Lytic Reactivation  Priya Bellare,
Volume 33, Issue 1, Pages (July 2010)
Targeting DCLK1 by miRNA-137.
Volume 23, Issue 4, Pages (April 2015)
Circular RNA Transcriptomic Analysis of Primary Human Brain Microvascular Endothelial Cells Infected with Meningitic Escherichia coli  Ruicheng Yang,
A Splicing-Independent Function of SF2/ASF in MicroRNA Processing
Volume 21, Issue 4, Pages (February 2006)
Presentation transcript:

Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway by María J. Bueno, Marta Gómez de Cedrón, Gonzalo Gómez-López, Ignacio Pérez de Castro, Lorena Di Lisio, Santiago Montes-Moreno, Nerea Martínez, Manuel Guerrero, Ruth Sánchez-Martínez, Javier Santos, David G. Pisano, Miguel Angel Piris, José Fernández-Piqueras, and Marcos Malumbres Blood Volume 117(23):6255-6266 June 9, 2011 ©2011 by American Society of Hematology

General overview of the transcriptional and genetic alterations in γ-irradiation-induced lymphomas. General overview of the transcriptional and genetic alterations in γ-irradiation-induced lymphomas. (A) Myc is a central node in the molecular interactions between up-regulated (red) or down-regulated (blue) proteins, including cell cycle regulators (Cdk or Ran pathways), protein synthesis molecules (Rpl and Rps proteins), and other signaling cascades. (See also supplemental Data for further details.) (B) Transcriptional profiling of miRNAs in normal thymuses (H1, H2, M1, and M3) or T-cell lymphomas. Unsupervised clustering of these data clearly discriminates normal thymuses vs tumor samples. Only significantly deregulated miRNA genes are shown. Blue shadows in miRNA names indicate the presence of a CpG island upstream of the corresponding human or mouse miRNA genes. Green shadows indicate that the CpG island is only present in the mouse sequence. (C) Summary from the comparative genome hybridization analysis of γ-irradiation-induced T-cell lymphomas showing the chromosomal position of down-regulated miRNA genes. Major DNA losses (green bars) and gains (red bars) are indicated to the right of the corresponding chromosomes. The location of Myc in chromosome 15 is also indicated. María J. Bueno et al. Blood 2011;117:6255-6266 ©2011 by American Society of Hematology

GIs between overexpressed genes and down-regulated miRNA genes. GIs between overexpressed genes and down-regulated miRNA genes. GIs are defined as the number of down-regulated miRNA genes that can potentially target specific sequences in all possible 3′-UTRs of the overexpressed gene indicated. (See supplemental Data for further details.) Myc is the overexpressed gene with the highest number of GIs in γ-irradiation-induced T-cell lymphomas. Thirteen of the 41 miRNA genes down-regulated in these tumors can potentially target the Myc 3′-UTR. Other genes potentially targeted by multiple miRNAs, such as Ncor2 (11 GI) and Kkbp3 (10 GI), are indicated in the figure. Only genes up-regulated in irradiation-induced lymphomas with more than or equal to 7 GI are represented. María J. Bueno et al. Blood 2011;117:6255-6266 ©2011 by American Society of Hematology

Control of Myc expression by miRNAs. Control of Myc expression by miRNAs. (A) Potential target sites for mature miRNAs in the mouse Myc 3′-UTR. Only mature miRNAs produced by miRNA genes down-regulated in γ-irradiation-induced lymphomas are shown in this scheme. Gene nomenclature is also indicated when different from the mature form (eg, mir-125b-1 is the gene that generates miR-125–3p). (B) Luciferase activity of a reporter construct carrying the Myc 3′-UTR downstream of the luciferase gene. The construct was cotransfected with a vector expressing each of the indicated miRNA precursors. All data are normalized versus the luciferase levels generated by scramble sequences. (C) Effect of miRNA genes on Myc protein levels. Transfection with miRNA genes was performed as described earlier in the Figure 3 legend, but cells were processed for immunoblot analysis for Myc or 2 different Myc targets, Mcm4 and Cyclin B1. A vertical line has been inserted to indicate repositioned gel lanes. The relative levels of Myc proteins were normalized using α-tubulin (α-tub.) as a loading control. (D) Luciferase activity of wild-type (wt) or mutant (mut) Myc 3′-UTRs in the presence of scrambled sequences (S) or the corresponding miRNAs. wt, indicates wild-type Myc 3′-UTR sequence; mut, single mutants for the indicated miRNA; and mut2, double mutant for the miR-125b-3p target sites. (E) Luciferase assays of wild-type Myc 3′-UTRs in the presence of pools of group 1 (G1; mir-132, mir-125b-1, let-7e, let-7-a, and mir-154), group 2 (G2; mir-301a, mir-148a, and mir-134), or group 3 (G3; mir-26b, mir-150, mir-207, and mir-223) miRNAs. In these pools, the sum of all miRNA vectors also equals 10 μg as in the scramble vectors or the previous assays. (F) Effect of G1–3 pools on Myc protein levels. Transfection with miRNA genes was performed as described earlier in the Figure 3 legend, but cells were processed for immunoblot analysis for Myc. The relative levels of Myc proteins were normalized using α-tubulin (α-tub.) as a loading control. María J. Bueno et al. Blood 2011;117:6255-6266 ©2011 by American Society of Hematology

Genetic interactions between protein-coding genes and miRNAs in BL Genetic interactions between protein-coding genes and miRNAs in BL. (A) Heat map of significantly down-regulated miRNAs in BL compared with normal lymph nodes. Genetic interactions between protein-coding genes and miRNAs in BL. (A) Heat map of significantly down-regulated miRNAs in BL compared with normal lymph nodes. (B) GSEA for down-regulated miRNAs targeting the MYC 3′-UTR. (C) Genetic interactions (GI) between up-regulated protein-coding genes and down-regulated miRNAs in BL. Only protein-coding genes with GI ≥ 6 are shown. María J. Bueno et al. Blood 2011;117:6255-6266 ©2011 by American Society of Hematology

Control of human MYC by multiple miRNAs. Control of human MYC by multiple miRNAs. (A) Schematic representation of the human MYC 3′-UTR and the localization of target sites for the miRNAs down-regulated in BLs. (B) Luciferase reporter assays to test the effect of the indicated miRNAs in the MYC 3′-UTR. Vectors expressing scrambled sequences (S) or mir-22 (not predicted to target MYC) were used as controls. (C) Mutagenesis of miRNA target sites in the human MYC 3′-UTR. Luciferase activity in the presence of the wild-type (wt) or a mutated (mut) MYC 3′-UTR in which 3 positions of the seed sequence have been mutated for each specific miRNA target site indicated. These constructs were assayed in the presence of vectors expressing the indicated miRNAs or scrambled sequences. (D) Effect of the indicated miRNAs in the protein levels of MYC in Raji BL cells. The pool contains an equimolar mixture of all indicated miRNAs in which the sum of all these miRNAs equals 10 μg as in the scramble vectors or the previous assays. María J. Bueno et al. Blood 2011;117:6255-6266 ©2011 by American Society of Hematology

Significant effect of mouse or human down-regulated miRNAs on Myc targets. Significant effect of mouse or human down-regulated miRNAs on Myc targets. (A) GIs between Myc target genes and down-regulated miRNA genes in mouse irradiation-induced lymphomas. Peripheral yellow nodes represent down-regulated miRNA genes (as in Figure 2), whereas Myc targets are distributed as a circle around Myc (the interaction between Myc and Myc targets is not shown for clarity). A total of 72 Myc targets are potentially targeted by down-regulated miRNA genes, and only genes with more than or equal to 3 GI are shown. A complete list of these interactions is provided in the Supplemental data. (B) Similar analysis of the GI between MYC target genes and down-regulated miRNAs in BLs. Peripheral yellow nodes represent down-regulated miRNA genes (as in Figure 7), whereas MYC targets are distributed as a circle around MYC. María J. Bueno et al. Blood 2011;117:6255-6266 ©2011 by American Society of Hematology

A model of the GIs between Myc, its targets, and miRNAs in normal and tumor cells. A model of the GIs between Myc, its targets, and miRNAs in normal and tumor cells. In normal cells, multiple miRNAs are expressed that can repress Myc or Myc targets. miRNA genes are not repressed by Myc because of the low levels of Myc signaling in normal cells. Tumor cells acquire diverse genetic or epigenetic alterations that result in the overexpresssion of Myc and Myc targets to facilitate tumor development through diverse cellular processes. On one hand, Myc can be amplified and overexpressed. On the other hand, miRNAs are silenced by genetic (loss of heterozygosity), epigenetic (hypermethylation), or regulatory (repression by Myc) mechanisms. Because of the low levels of these miRNAs, signaling by Myc and Myc targets is enhanced resulting in dramatic deregulation of the cell cycle, protein translation, and metabolism among other cellular processes. This model is mostly based on the results obtained by Chang et al19 on the repression of miRNAs by Myc and the control of Myc by miRNAs reported here. María J. Bueno et al. Blood 2011;117:6255-6266 ©2011 by American Society of Hematology