Diffusion of Gd-DTPA2− into articular cartilage

Slides:



Advertisements
Similar presentations
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis.
Advertisements

The zonal architecture of human articular cartilage described by T2 relaxation time in the presence of Gd-DTPA2−  Jatta E. Kurkijärvi, Mikko J. Nissi,
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
In vivo comparison of delayed gadolinium-enhanced MRI of cartilage and delayed quantitative CT arthrography in imaging of articular cartilage  J. Hirvasniemi,
PQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage – associations to matrix composition.
Adiabatic rotating frame relaxation of MRI reveals early cartilage degeneration in a rabbit model of anterior cruciate ligament transection  J. Rautiainen,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
J. Rautiainen, M. T. Nieminen, E. -N. Salo, H. T. Kokkonen, S
Indentation diagnostics of cartilage degeneration
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative.
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Contrast Enhanced Computed Tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage  P.N. Bansal, N.S.
Delivery of agents into articular cartilage by laser-ultrasound
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
The layered structure of the articular surface
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
A clinically realistic large animal model of intra-articular fracture that progresses to post- traumatic osteoarthritis  J.E. Goetz, D. Fredericks, E.
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
The differences on extracellular matrix among each portion of meniscus
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
H. J. Nieminen, T. Ylitalo, S. Kauppinen, E. Hæggström, M. Finnilä, S
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
Alteration of N-glycans related to articular cartilage deterioration after anterior cruciate ligament transection in rabbits  T. Matsuhashi, M.D., N.
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application  L. Wang, M.S., M. Lazebnik,
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Contrast-enhanced computed tomography imaging using a cationic contrast agent correlates with the equilibrium modulus of mouse tibial plateau cartilage 
The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development  A.R.
Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient  R. Krishnan, M. Caligaris, R.L. Mauck, C.T.
Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy  C.-Y. Wen, C.-B. Wu, B. Tang, T. Wang, C.-H.
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
S. Zheng, Y. Xia  Osteoarthritis and Cartilage 
Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage  A.J. Griebel, S.B. Trippel, C.P. Neu  Osteoarthritis.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease 
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
In vitro method for 3D morphometry of human articular cartilage chondrons based on micro-computed tomography  I. Kestilä, J. Thevenot, M.A. Finnilä, S.S.
C. S. Winalski, M. D. , S. Shortkroff, Ph. D. , E. Schneider, Ph. D
Cartilage degeneration in different human joints
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
Presentation transcript:

Diffusion of Gd-DTPA2− into articular cartilage E.-N. Salo, M.J. Nissi, K.A.M. Kulmala, V. Tiitu, J. Töyräs, M.T. Nieminen  Osteoarthritis and Cartilage  Volume 20, Issue 2, Pages 117-126 (February 2012) DOI: 10.1016/j.joca.2011.11.016 Copyright © 2011 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Schematic drawing of the measurement geometry. The cartilage samples were fitted inside silicone tubes, and the tubes were placed inside an acrylic sample holder. The measurement geometry allowed the contrast agent to penetrate only through superficial or deep cartilage while keeping the other side of the sample moist with PBS. The acrylic sample holder was further placed inside a larger test tube filled with PBS to ensure adequate loading of the coil. Osteoarthritis and Cartilage 2012 20, 117-126DOI: (10.1016/j.joca.2011.11.016) Copyright © 2011 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Representative gadopentetate concentration maps at 1.5 and 18h from immersion, Safranin-O stained histological section, PLM-derived collagen orientation map and FTIRI-derived collagen distribution map for intact and enzymatically degraded samples. The enzymatically degraded sample showed significant GAG depletion, whereas collagen content and distribution remained unchanged. Osteoarthritis and Cartilage 2012 20, 117-126DOI: (10.1016/j.joca.2011.11.016) Copyright © 2011 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Average (n=6 per sample group) contrast agent concentration over time in superficial (A, D), middle (B, E) and deep zones (C, F) for samples with alternating penetration routes (A–C) and for intact and degraded samples (D–F). Shaded background indicates statistically significant (p<0.05) difference between the sample groups. The diffusion through cartilage surface results in faster equilibration especially in superficial cartilage, whereas diffusion through deep cartilage is notably slower [Fig. 3(A)]. Increased gadopentetate accumulation can be seen in degraded layers [Fig. 3(D)]. Osteoarthritis and Cartilage 2012 20, 117-126DOI: (10.1016/j.joca.2011.11.016) Copyright © 2011 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Average (n=6 per sample group) gadopentetate concentration profiles across cartilage depth for the samples with alternating penetration route (A) or for intact and degraded samples (D). Statistical significance (p=0.031) between sample groups is indicated with a circle (○, 1.5h) or an asterisk (*, 18h). With alternating penetration direction, the concentration profiles are significantly different at 1.5h from immersion, but the difference is absent after 18h. Difference between intact and degraded samples is significant at 1.5h, but not at 18h. The GAG distribution profiles, as measured by OD (E) indicate statistically significant GAG depletion in the most 70% of cartilage and no differences between alternating penetration directions (B). FTIRI did not reveal significant differences in collagen distribution between the sample groups (C, F). Osteoarthritis and Cartilage 2012 20, 117-126DOI: (10.1016/j.joca.2011.11.016) Copyright © 2011 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Average (n=6 per sample group) gadopentetate concentration in bulk cartilage volume (A, C, thin line), the bi-exponential fits (A, C, thick line) and diffusion flux over time (B, D) for alternating penetration direction (A, B) and for intact and degraded samples (C, D). Statistically significant (p=0.031) difference between sample groups is indicated with shaded background. The bulk contrast agent concentration increases continuously up to 18h, whereas the diffusion flux decreases over time. Osteoarthritis and Cartilage 2012 20, 117-126DOI: (10.1016/j.joca.2011.11.016) Copyright © 2011 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Estimated average (n=6 per sample group) GAG concentration over time (A for varying penetration direction, B for intact and degraded samples) and estimated GAG concentration across cartilage depth (C for varying penetration direction, D for intact and degraded samples). Statistical significance (p=0.031) between sample groups is indicated with a circle (○, 1.5h) or an asterisk (*, 18h). When the contrast agent diffusion is incomplete, GAG concentration is overestimated especially in deep layers of cartilage. Osteoarthritis and Cartilage 2012 20, 117-126DOI: (10.1016/j.joca.2011.11.016) Copyright © 2011 Osteoarthritis Research Society International Terms and Conditions