Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,

Slides:



Advertisements
Similar presentations
Glenn Bateman Lehigh University Physics Department
Advertisements

Investigation of Particle Pinch in Toroidal Device Kenji Tanaka 1 1 National Institute for Fusion Science, Toki, Gifu , Japan 2 nd Asian Pacific.
1 15th May 2012 Association EURATOM-CEA Shaodong Song Observation of Strong Inward Heat Transport with Off-axis ECRH in Tore Supra Heat pinch experiments.
1 G.T. Hoang, 20th IAEA Fusion Energy Conference Euratom Turbulent Particle Transport in Tore Supra G.T. Hoang, J.F. Artaud, C. Bourdelle, X. Garbet and.
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
Large-scale structures in gyrofluid ETG/ITG turbulence and ion/electron transport 20 th IAEA Fusion Energy Conference, Vilamoura, Portugal, November.
Chalmers University of Technology The L-H transition on EAST Jan Weiland and C.S. Liu Chalmers University of Technoloy and EURATOM_VR Association, S
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
Reflectometry on Alcator C-Mod: Status and future upgrades Outline: C-Mod reflectometry Physics examples Upgrades: 1.High frequency 2.Sideband 3.Data acquisition.
Valisa et al C-mod Ideas Forum, 8 April Electron heating and Ni / Mo Pump Out L Carraro, I Predebon, ME Puiatti, M Valisa ( Consorzio RFX Padova)
Correlation between Electron Transport and Shear Alfvén Activity in NSTX D. Stutman, N. Gorelenkov, L. Delgado, S. Kaye, E. Mazzucatto, K. Tritz and the.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
Calculations of Gyrokinetic Microturbulence and Transport for NSTX and C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory Transport Task Force.
Max-Planck-Institut für Plasmaphysik ITPA T&C Group meeting, CCFE, He & Impurity transport modelling He & Impurity transport Introduction Remarks.
Microstability analysis of e-ITBs in high density FTU plasmas 1)Associazione EURATOM-ENEA sulla fusione, C.R. Frascati, C.P , Frascati, Italy.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Internal Transport Barriers and Improved Confinement in Tokamaks (Three possible.
Characterization of core and edge turbulence in L- and H-mode Alcator C-Mod plasmas Outline: Alcator C-Mod tokamak Fluctuation diagnostics Low to high.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Carine Giroud 1 ITPA Naka Impurity transport at JET On-going analysis from recent campaign C. Giroud, C. Angioni, L. Carraro, P. Belo, I. Coffey,
RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
JT-60U -1- Access to High  p (advanced inductive) and Reversed Shear (steady state) plasmas in JT-60U S. Ide for the JT-60 Team Japan Atomic Energy Agency.
(I) Microturbulence in magnetic fusion devices – New insights from gyrokinetic simulation & theory F. Jenko, C. Angioni, T. Dannert, F. Merz, A.G. Peeters,
FEC 2006 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower.
1 Feature of Energy Transport in NSTX plasma Siye Ding under instruction of Stanley Kaye 05/04/09.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
M. Greenwald, et al., APS-DPP 2006 Density Peaking At Low Collisionality on Alcator C-Mod APS-DPP Meeting Philadelphia, 10/31/2006 M. Greenwald, D. Ernst,
1 SIMULATION OF ANOMALOUS PINCH EFFECT ON IMPURITY ACCUMULATION IN ITER.
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
Carine Giroud 1 21st IAEA Fusion Energy, Chengdu Carine Giroud 1 IAEA, Chengdu Progress in understanding impurity transport at JET.
Advanced Tokamak Modeling for FIRE C. Kessel, PPPL NSO/PAC Meeting, University of Wisconsin, July 10-11, 2001.
47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado ECE spectrum of HSX plasma at 0.5 T K.M.Likin, H.J.Lu, D.T.Anderson,
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory NSTX Physics.
Profiles of density fluctuations in frequency range of (20-110)kHz Core density fluctuations Parallel flow measured by CHERS Core Density Fluctuations.
17th ISHW Oct. 12, 2009, Princeton, NJ, USA Effect of Nonaxisymmetric Perturbation on Profile Formation I-08 T. Morisaki, Y. Suzuki, J. Miyazawa, M. Kobayashi,
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
Decrease of transport coefficients in the plasma core after off-axis ECRH switch-off K.A.Razumova and T-10 team.
9-12 Sept. 2002E. BARBAT0-ENEA, TTF, Cordoba1 Electron Internal Transport barriers by LHCD and ECRH in FTU-high density plasmas E. Barbato Associazione.
1 Ernst/IAEA EX/2-3/Oct Controlling H-Mode Particle Transport with Modulated Electron Heating in DIII-D and Alcator C-Mod via TEM Turbulence by D.R.
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
SAWTOOTH AND M=1 MODE BEHAVIOUR IN FTU PELLET ENHANCED DISCHARGES
Numerical investigation of H-mode threshold power by using LH transition models 8th Meeting of the ITPA Confinement Database & Modeling Topical Group.
Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik1, D.L. Brower2, C. Deng2,
Turbulence associated with the control of internal transport barriers
11th IAEA Technical Meeting on H-mode Physics and Transport Barriers" , September, 2007 Tsukuba International Congress Center "EPOCHAL Tsukuba",
Integrated discharge scenario
in tokamaks and stellarators
Charge Exchange Analysis Diagnostic Development
Center for Plasma Edge Simulation
Investigation of Energetic ICRF Minority Protons on Alcator C-Mod 48th APS-DPP 10/31/2006 V. Tang*, P.T. Bonoli, J. Liptac, R.R. Parker, J.C. Wright,
High Bootstrap Fraction Plasmas with ITBs
First Experiments Testing the Working Hypothesis in HSX:
Comparisons of Measurements and Gyro-kinetic Simulations of Turbulence and Trans-port in Alcator C-Mod EDA H-Mode Discharges M. B. Sampsell, R. V. Bravenec.
49th Annual Meeting of APS - DPP Orlando, 11/14/2007
ITB Control with LH Heating & Current Drive
T. Morisaki1,3 and the LHD Experiment Group
Non-Local Effects on Pedestal Kinetic Ballooning Mode Stability
Stabilization of m/n=1/1 fishbone by ECRH
T. Morisaki1,3 and the LHD Experiment Group
H. Nakano1,3, S. Murakami5, K. Ida1,3, M. Yoshinuma1,3, S. Ohdachi1,3,
Reflectometry measurements of turbulence in Alcator C-Mod plasmas
Presentation transcript:

Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard, D. Mikkelsen*, E. Marmar, J. Rice MIT Plasma Science and Fusion Center *Princeton Plasma Physics Laboratory APS DPP Meeting Philadelphia, PA October 31, 2006

Motivation Core Edge Inward pinch Outward diffusion Background: Internal transport barriers (ITBs) can be routinely produced in C-Mod steady enhanced Dα (EDA) H-mode plasmas by applying ICRF at |r/a| ≥ 0.5 (off-axis heating) They are observed primarily in the electron particle channel and are marked by the steepening of the density and pressure profiles following the L-H transition Framework: During normal plasma operation inward neoclassical Ware pinch is balanced by the outward diffusion caused by the microturbulent modes, resulting in a flat density profile Core Edge Inward pinch Outward diffusion

Motivation Inward pinch Core Edge Background: Internal transport barriers (ITBs) can be routinely produced in C-Mod steady enhanced Dα (EDA) H-mode plasmas by applying ICRF at |r/a| ≥ 0.5 (off-axis heating). They are observed primarily in the electron particle channel and are marked by the steepening of the density and pressure profiles following the L-H transition. Framework: During normal plasma operation inward neoclassical Ware pinch is balanced by the outward diffusion caused by the microturbulent modes, resulting in a flat density profile Inward pinch Core Edge Outward diffusion Suppressing turbulent diffusion allows the pinch to overcome, resulting in a peaked density profile Longer modes (ITG) are responsible for transport Shifting the ICRF resonance outward flattens the temperature profile and decreases the mode’s drive

Plasma parameters (ITB vs. non-ITB) time (s) 6.3 T ITB line-integrated density (1020 m-2) density peaking RF power (MW) time (s) line-integrated density (1020 m-2) density peaking = RF power (MW) Magnetic field scan: shift the RF resonance location on shot-to-shot basis Plasma current adjusted proportionally to keep q95 constant Sharp threshold in BT consistent with previous observations

Pre-ITB electron temperature gradient non-ITB ITB Just inside ITB foot Near ITB foot location Temperature scale length is calculated from ECE measurements Averaging has been done over steady portions of the discharges (pre-ITB phase for ITB discharges) R/LT decreases as the ICRF resonance position is moved outward by raising the magnetic field This decrease is observed just inside the ITB foot location for ITB discharges

Change in electron temperature gradient time (s) R=0.83m R=0.78m ITB foot 70 MHz on-axis 80 MHz off-axis Dual frequency ICRF setup ITB develops during the off-axis heating phase Temperature measurements are done by high resolution (32 channels) ECE system Temperature scale length is derived from channels around the ITB location Profiles are shown at times corresponding to 100% on-axis heating, 50%-50% on- and off-axis, and 100% off-axis heating R/LT decreases in the region of ITB as the ICRF resonance moves off axis time (s) R (m) Te (keV) R/LT

Ion temperature profile measurements ITB non-ITB Ion temperature is measured by high resolution x-ray system (HIREX) Central ion temperature is derived from neutron rate measurements Ion temperature profile gets flatter as ICRF resonance is moved off axis

Ion temperature profile (TRANSP simulation) RF (x10) (Watts/cm3) ITB Ti is calculated by TRANSP to match the neutron rate (using feedback corrected multiplier on χneo to obtain χi) Ion temperature profile gets broader as ICRF resonance is move outward This trend is consistent with experimental observations

ITG growth rate profiles ITB non-ITB ITG/ETG growth rate profiles are calculated by linear gyrokinetic stability code GS2 based on TRANSP analysis No difference in ETG growth rates and spectra for ITB vs. non-ITB cases The region of stability for ITG modes gets wider as ICRF resonance is moved outward kρi spectra are similar for all runs and peak at ~0.3-0.4

Conclusions Experimental evidence: electron and ion temperature profiles get flatter as ICRF resonance location is shifted off-axis Ti profiles as calculated by TRANSP exhibit similar trend with the absolute deviation from the electron temperature being small Using TRANSP Ti profiles linear GS2 calculations show that region of stability to ITG modes gets wider as ICRF resonance is move outward Suppressing ITG turbulence can be a dominant factor in the triggering mechanisms for off-axis ICRF heated ITBs in C-Mod