by Jessica M. Salmon, Nicholas J. Slater, Mark A. Hall, Matthew P

Slides:



Advertisements
Similar presentations
Critical Roles of Lysosomal Acid Lipase in Myelopoiesis
Advertisements

by Ayten Kandilci, and Gerard C. Grosveld
by Jad I. Belle, David Langlais, Jessica C
MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome by Lital Shaham, Elena Vendramini, Yubin Ge, Yaron Goren, Yehudit Birger,
Identification of key regulatory pathways of myeloid differentiation using an mESC-based karyotypically normal cell model by Dong Li, Hong Yang, Hong Nan,
Constitutively Active β-Catenin Confers Multilineage Differentiation Potential on Lymphoid and Myeloid Progenitors  Yoshihiro Baba, Karla P. Garrett,
Protein kinase B (PKB/c-akt) regulates homing of hematopoietic progenitors through modulation of their adhesive and migratory properties by Miranda Buitenhuis,
Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia by Fumio Nakahara, Mamiko Sakata-Yanagimoto,
Volume 6, Issue 4, Pages (April 2010)
Requirement of c-Myb for p210BCR/ABL-dependent transformation of hematopoietic progenitors and leukemogenesis by Maria Rosa Lidonnici, Francesca Corradini,
by Shawn W. Cochrane, Ying Zhao, Robert S. Welner, and Xiao-Hong Sun
Emergence of muscle and neural hematopoiesis in humans
Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34+ cells by Christian P. Kalberer, Uwe Siegler, and Aleksandra Wodnar-Filipowicz.
by Silke Huber, Reinhard Hoffmann, Femke Muskens, and David Voehringer
Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E)‏ by Grzegorz Terszowski, Claudia Waskow, Peter.
Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis by Ronan Chaligné, Chloé James, Carole Tonetti, Rodolphe Besancenot,
Volume 129, Issue 6, Pages (June 2007)
Activation of the vitamin D receptor transcription factor stimulates the growth of definitive erythroid progenitors by Jeffrey Barminko, Brad M. Reinholt,
Novel function for interleukin-7 in dendritic cell development
by Xiaowu Zhang, and Ruibao Ren
Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo by Ying Liu, Ramona.
Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations by Oliver Tunstall-Pedoe, Anindita.
Volume 17, Issue 2, Pages (February 2013)
D3: A Gene Induced During Myeloid Cell Differentiation of Linlo c-Kit+ Sca-1+ Progenitor Cells by Sarah R. Weiler, John M. Gooya, Mariaestela Ortiz, Schickwann.
Dendritic cell potentials of early lymphoid and myeloid progenitors
by Hyung-Gyoon Kim, Kyoko Kojima, C. Scott Swindle, Claudiu V
by Hiroyuki Kawagoe, and Gerard C. Grosveld
Elucidation of the EP defect in Diamond-Blackfan anemia by characterization and prospective isolation of human EPs by Deena Iskander, Bethan Psaila, Gareth.
Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels by Norio Suzuki, Naruyoshi Suwabe, Osamu.
The exosome complex establishes a barricade to erythroid maturation
Allogeneic bone marrow transplant in the absence of cytoreductive conditioning rescues mice with β-thalassemia major by Yongliang Huo, Jonathan R. Lockhart,
Volume 46, Issue 5, Pages e4 (May 2017)
Volume 31, Issue 5, Pages (November 2009)
MEK kinase 1 activity is required for definitive erythropoiesis in the mouse fetal liver by Barbara Bonnesen, Cathrine Orskov, Susanne Rasmussen, Peter.
Pak2 regulates myeloid-derived suppressor cell development in mice
by Pratima Chaurasia, Dmitriy Berenzon, and Ronald Hoffman
Volume 126, Issue 2, Pages (July 2006)
Volume 1, Issue 1, Pages (February 2002)
Cytotoxic CD8+ T Cells Stimulate Hematopoietic Progenitors by Promoting Cytokine Release from Bone Marrow Mesenchymal Stromal Cells  Christian M. Schürch,
Volume 5, Issue 5, Pages (November 1996)
Volume 19, Issue 3, Pages (September 2003)
Volume 4, Issue 2, Pages (February 2003)
Volume 2, Issue 6, Pages (December 2012)
Volume 4, Issue 3, Pages (March 2015)
Volume 15, Issue 2, Pages (August 2001)
Volume 31, Issue 5, Pages (November 2009)
Volume 29, Issue 2, Pages (August 2008)
Emmanuelle Passegué, Erwin F. Wagner, Irving L. Weissman  Cell 
Ravindra Majeti, Christopher Y. Park, Irving L. Weissman 
Volume 9, Issue 1, Pages (July 2011)
Deletion of the Scl +19 enhancer increases the blood stem cell compartment without affecting the formation of mature blood lineages  Dominik Spensberger,
Identification of a T Lineage-Committed Progenitor in Adult Blood
Volume 104, Issue 1, Pages (January 2001)
Volume 4, Issue 2, Pages (February 2009)
Volume 14, Issue 2, Pages (February 2001)
Volume 32, Issue 5, Pages (May 2010)
Twist1 regulates embryonic hematopoietic differentiation through binding to Myb and Gata2 promoter regions by Kasem Kulkeaw, Tomoko Inoue, Tadafumi Iino,
STAT3 Is Required for Flt3L-Dependent Dendritic Cell Differentiation
Kiran Batta, Magdalena Florkowska, Valerie Kouskoff, Georges Lacaud 
Human granulocyte-macrophage colony-stimulating factor (hGM-CSF)–dependent in vitro and in vivo proliferation and differentiation of all hematopoietic.
Volume 23, Issue 3, Pages (September 2005)
Volume 39, Issue 1, Pages (July 2013)
SLAM Family Markers Resolve Functionally Distinct Subpopulations of Hematopoietic Stem Cells and Multipotent Progenitors  Hideyuki Oguro, Lei Ding, Sean J.
Tomokatsu Ikawa, Hiroshi Kawamoto, Lilyan Y.T. Wright, Cornelis Murre 
Volume 17, Issue 2, Pages (August 2002)
Michael F. Gurish, PhD, Joshua A. Boyce, MD 
Volume 17, Issue 5, Pages (November 2002)
Granulocyte colony-stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice by Jeffrey M. Bernitz, Michael G. Daniel,
Volume 21, Issue 6, Pages (December 2004)
Hmga2 expression augments BM cells and HSCs with enhancing extramedullary hematopoiesis in JAK2V617F-induced MPN. (A) The total nuclear cell numbers from.
Presentation transcript:

Aberrant mast-cell differentiation in mice lacking the stem-cell leukemia gene by Jessica M. Salmon, Nicholas J. Slater, Mark A. Hall, Matthew P. McCormack, Stephen L. Nutt, Stephen M. Jane, and David J. Curtis Blood Volume 110(10):3573-3581 November 15, 2007 ©2007 by American Society of Hematology

SCL−/Δ mice have increased mast-cell progenitors in the peritoneal cavity. SCL−/Δ mice have increased mast-cell progenitors in the peritoneal cavity. (A) Numbers of toluidine blue+ and safranin red+ mast cells in connective tissue of the ears of SCL+/Δ and SCL−/Δ mice (n = 3 for each genotype). Results are the mean and standard error of the mean (SEM) of mast cells per 100× high-power field (HPF). (B) Wright-Giemsa stain of peritoneal fluid demonstrating the small, granular mast cells (→) seen only in the SCL−/Δ mice. A normal, large granular mast cell from an SCL+/Δ mouse is shown for comparison. The mean and SEM numbers of each type of mast cell were calculated by absolute peritoneal cell count × proportion of mast cells using flow cytometry. Data represent the mean and SD from 4 mice of each genotype. (C) Flow cytometric analysis of peritoneal cells from SCL+/Δ and SCL−/Δ mice stained for c-kit and Sca-1 expression. (D) Wright-Giemsa stain of sorted c-kit+Sca-1+ (K+S+) and c-kit+Sca-1− (K+S−) peritoneal cells from an SCL−/Δ mouse. (E) Expression of the high-affinity receptor for IgE (FcϵRI) on peritoneal mast- cell subsets from SCL+/Δ and SCL−/Δ mice. (F) Flow cytometric analysis of SCL−/Δ K+S− mast cells cultured for 3 weeks in media containing IL-3 and SCF. Jessica M. Salmon et al. Blood 2007;110:3573-3581 ©2007 by American Society of Hematology

SCL−/Δ mice have increased bone marrow and splenic mast-cell progenitors. SCL−/Δ mice have increased bone marrow and splenic mast-cell progenitors. (A) Morphology of typical colony grown from agar culture of SCL−/Δ bone marrow. The colony was floated and fixed on a slide and then stained with hematoxylin. (B) Toluidine blue stain of cells picked from a typical colony and spun onto a slide. (C) Flow cytometric analysis of a single colony stained with c-kit, Sca-1, and FcϵRI. The dotted line in the histogram represents the isotype control. (D) Acetylcholinesterase stain of floated and fixed mast cell colony demonstrating megakaryocytes (Megs). (E) Flow cytometric analysis of CD34 and β7-integrin expression on lineage marker–negative (Mac-1, B220, TER119, CD3), c-kit+ Sca-1− IL-7R− bone marrow (BM) and spleen cells from SCL+/Δ and SCL−/Δ mice. The numbers represent the mean percentages within the gates of total nucleated cells from 2 mice of each genotype. (F) Mean colony numbers from bone marrow cells cultured in methylcellulose for blast-forming unit–erythroid (Ery) or agar for megakaryocyte (Meg), granulocyte/macrophage (G/M), and mast-cell colonies. Numbers have been standardized for 25 000 cultured cells from mice reconstituted with either SCL+/Δ or SCL−/Δ bone marrow cells (n = 4 for each genotype). Jessica M. Salmon et al. Blood 2007;110:3573-3581 ©2007 by American Society of Hematology

Mast-cell progenitors in SCL−/Δ mice arise from the megakaryocyte-erythroid progenitor cell fraction. Mast-cell progenitors in SCL−/Δ mice arise from the megakaryocyte-erythroid progenitor cell fraction. (A) Flow cytometric analysis used for isolating common myeloid progenitors (CMPs), megakaryocyte-erythroid progenitors (MEPs), and granulocyte-macrophage progenitors (GMPs) from SCL+/Δ or SCL−/Δ bone marrow cells. The gate used for lineageneg c-kit+ cells is shown in the left dot plot and gates for CMPs, MEPs, and GMPs in the right dot plots. The numbers represent the mean percentage of MEPs of total nucleated cells from 4 mice of each genotype. (B) Mean numbers of colonies from 500 sorted cells from SCL+/Δ or SCL−/Δ mice cultured in methylcellulose or agar containing IL-3, SCF, and Epo. Results are the means from 2 independent experiments. Ery indicates blast forming unit-erythroid; Meg, megakaryocyte colonies; and G/M, granulocyte and granulocyte-macrophage colonies. (C) Acetylcholinesterase stain of a floated and fixed mast cell colony grown from SCL−/Δ MEP cells. (D) Flow cytometric analysis used for isolating myeloid progenitors according to PU.1gfp and FcRIII/II expression on lineageneg Sca-1− IL-7Rα− c-kit+ bone marrow cells from SCL+/Δ or SCL−/Δ mice. The gated regions used for cell sorting and the mean percentage of R3 cells calculated from 3 mice of each genotype are shown. (E) Relative PU.1 mRNA expression in sorted cell fractions measured by real-time PCR. Expression was normalized for HPRT and expression of PU.1 in SCL+/Δ R2 cells was arbitrarily set at 1.0. (F) Mean numbers of colonies from 500 sorted cells from SCL+/Δ or SCL−/Δ mice cultured in methylcellulose or agar containing IL-3, SCF, and Epo. Results are the mean from 3 independent experiments. Jessica M. Salmon et al. Blood 2007;110:3573-3581 ©2007 by American Society of Hematology

Normal mast-cell progenitors arise from GMPs rather than MEPs Normal mast-cell progenitors arise from GMPs rather than MEPs. (A) Proportion of progenitor cell types generated from 10-day liquid cultures of GMPs, CMPs, or MEPs from SCL+/Δ or SCL−/Δ mice. Normal mast-cell progenitors arise from GMPs rather than MEPs. (A) Proportion of progenitor cell types generated from 10-day liquid cultures of GMPs, CMPs, or MEPs from SCL+/Δ or SCL−/Δ mice. Wells containing only single colonies were analyzed by morphology and flow cytometry. At least 20 colonies were analyzed for each cell type. (B) Wright-Giemsa stain of a single colony from SCL+/Δ GMP culture. (C) Flow cytometric analysis of a single colony from SCL+/Δ GMP culture. (D) Wright-Giemsa stain of a single colony from a SCL+/Δ CMP culture. Jessica M. Salmon et al. Blood 2007;110:3573-3581 ©2007 by American Society of Hematology

Elevated expression of GATA-2 in SCL+/Δ CMPs and MEPs Elevated expression of GATA-2 in SCL+/Δ CMPs and MEPs. (A) Relative expression of PU.1, GATA-1, and GATA-2 mRNA in GMPs, CMPs, or MEPs isolated from wild-type (+/+), SCL-heterozygous (+/Δ), and SCL-deleted (−/Δ) mice and measured by real-time PCR. Expressio... Elevated expression of GATA-2 in SCL+/Δ CMPs and MEPs. (A) Relative expression of PU.1, GATA-1, and GATA-2 mRNA in GMPs, CMPs, or MEPs isolated from wild-type (+/+), SCL-heterozygous (+/Δ), and SCL-deleted (−/Δ) mice and measured by real-time PCR. Expression was normalized for HPRT and expression of the gene in SCL+/+ CMP cells was arbitrarily set at 1.0. (B) Relative expression of GATA-2 in progenitor cells isolated on the basis of PU.1gfp and FcRIII/II expression as described in Figure 3D. Expression was normalized for HPRT and expression of GATA-2 in SCL+/Δ R2 cells was arbitrarily set at 1.0. Jessica M. Salmon et al. Blood 2007;110:3573-3581 ©2007 by American Society of Hematology

Enforced expression of SCL does not prevent mast-cell formation from SCL−/Δ cells. Enforced expression of SCL does not prevent mast-cell formation from SCL−/Δ cells. (A) Western blot of SCL+/Δ bone marrow cells infected with either an MSCV-GFP retrovirus (GFP) or MSCV-SCLiresGFP retrovirus (SCL). Cells were harvested 3 weeks after sorting for GFP expression and growth in IL-3 and SCF. (B) Wright-Giemsa stain of SCL−/Δ bone marrow cells infected with the GFP or SCL retrovirus and cultured for 6 days in erythroid media containing SCF, Epo, IGF-1, and dexamethasone. (C) Numbers of erythroblasts (Erys) and granulocyte-macrophage cells (G/Ms) generated from 105 infected SCL+/Δ or SCL−/Δ bone marrow cells cultured in erythroid media for 6 days. Data are representative of 3 independent experiments. Jessica M. Salmon et al. Blood 2007;110:3573-3581 ©2007 by American Society of Hematology

SCL is required for mast-cell maturation. SCL is required for mast-cell maturation. (A) Southern blot (left) and Northern blot (right) of mast-cell lines derived from SCL+/Δ or SCL−/Δ bone marrow cells. Tail DNA from MxSCL+/fl and MxSCL−/fl mice is shown to demonstrate the position of the SCLfl allele. The faint band running at 18S may represent cross-hybridization with LYL1. (B) Expression of the MC-CPA (CPA), MCP-5, and MCP-6 in SCL−/Δ mast-cell lines relative to SCL+/Δ mast-cell lines. Data represent analysis of at least 4 lines from each genotype. *P < .05 using Student t test. (C) Surface FcϵRI expression on resting (no IgE) or IgE-stimulated SCL+/Δ (shaded histogram) and SCL−/Δ (open histogram) mast-cell lines. The mean cell fluorescence (MCF) of FcϵRI expression was calculated from 4 cell lines of each genotype. The fold induction of FcϵRI expression by IgE compared with no IgE is shown for 4 lines of each genotype. (D) Ca2+ flux in SCL+/Δ or SCL−/Δ mast-cell lines determined by flow cytometry based on the change of FL5/FL4 ratio. Data are representative of 3 cell lines of each genotype. (E) Southern blot of a mast-cell line derived from an SCLfl/fl mouse. The cells were infected with a tamoxifen-inducible Cre recombinase retrovirus and treated for 48 hours with various concentrations of tamoxifen (0 to 3 μM). (F) Surface FcϵRI expression on Cre retrovirus-infected mast-cell lines derived from SCL+/fl mouse or SCLfl/fl mouse. FcϵRI expression was measured in the absence (open histogram) or presence (shaded histogram) of 1 μM tamoxifen. (G) Expression of the α-, β-, and γ- chains of FcϵRI in SCL−/Δ mast-cell lines relative to SCL+/Δ mast-cell lines. Data represent analysis of 8 cell lines of each genotype. (H) Spleen sections from SCL+/Δ and SCL−/Δ mice treated with 25 μg/kg per day mIL-3 (PeproTech) and 50 μg/kg per day rSCF (Amgen) for 5 days. Sections are stained with toluidine blue to detect cells with metachromatic mast-cell granules (→). Data represent the mean number of mast cells per high-power field from 2 mice. (I) The mean number of mast cells in peritoneal space from cytokine-treated mice shown in panel H was calculated by multiplying the absolute peritoneal cell count by the percentage of mast cells determined by flow cytometry: small c-kit+Sca-1− and large c-kit+Sca-1+. Jessica M. Salmon et al. Blood 2007;110:3573-3581 ©2007 by American Society of Hematology