Capture and Transmission of polarized positrons from a Compton Scheme

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

Radiation Physics | ELBE | SRF Photo Injector for Electron- Laser Interaction LA 3 NET conference: Laser applications at accelerators, Mallorca,
Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
Preliminary result on Quarter wave transformer simulation a short lens with a high magnetic field and a long solenoidal magnetic field. Field profile of.
CLIC Drive Beam Injector Design Update Shahin Sanaye Hajari 1.Institute For Research in Fundamental Sciences (IPM), Tehran, Iran 2.CERN, Geneva, Switzerland.
Status of Undulator-based Positron Source Baseline Design Leo Jenner, but based largely on a talk given by Jim Clarke to Positron DESY-Zeuthen,
2 February 2005Ken Moffeit Spin Rotation scheme for two IRs Ken Moffeit SLAC.
Compton Linac for Polarized Positrons V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009.
ALPHA Storage Ring Indiana University Xiaoying Pang.
Introduction Simulation Results Conclusion Hybrid Source Studies Olivier Dadoun A. Variola, F. Poirier, I. Chaikovska,
16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC e + sources status L. Rinolfi with contributions from F. Antoniou, H. Braun, A. Latina, Y. Papaphilippou,
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
After Posipol In my opinion we are still too much dispersed. We have to re compact our community if we want to succeed in presenting a Compton version.
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne L. Rinolfi Possible e - and e + sources for LHeC 1 Thanks to O. Brüning, A. Vivoli and F. Zimmermann.
A.Variola LCWS Bejing ERL Compton Scheme Status of the Orsay activity.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Status of the CLIC main beam injectors LCWS, Arlington, Texas, October 22 th -26 th, 2012Steffen Döbert, BE-RF Overview of the CLIC main beam injectors.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
28 th August 2011 POSIPOL Workshop – IHEP-Beijing- ChinaL. Rinolfi Louis Rinolfi CLIC e + status.
GDE FRANCE Why High brillance gun is good for the ERL scheme? And SC GUN? Alessandro Variola For the L.A.L. Orsay group.
Beam dynamics and linac optics studies for medical proton accelerators
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
Polarization of final electrons/positrons during multiple Compton
S.M. Polozov & Ko., NRNU MEPhI
Multi-bunch Operation for LCLS, LCLS_II, LCLS_2025
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
Positron production rate vs incident electron beam energy for a tungsten target
Positron Source and Injector
Positron Sources of Next generation B-factories (SuperKEKB, SuperB)
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Positron capture section studies for CLIC Hybrid source - baseline
Calculation of Beam Equilibrium and Luminosities for
Injector and positron source scheme. A first evaluation Thanks to O
Status of the CLIC main beam injectors
Beam-beam effects in eRHIC and MeRHIC
NC Accelerator Structures
CLIC e+ status Louis Rinolfi.
CLIC Main Beam Sources and their transfer lines
Injection facility for Novosibirsk Super Charm Tau Factory
Compton effect and ThomX What possible future?
Progress activities in short bunch compressors
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Electron Source Configuration
ERL accelerator review. Parameters for a Compton source
Status of the CLIC Injector studies
SuperB e+/e- main linac and diagnostics studies
CEPC Injector Damping Ring
CEPC Injector positron source
Pulsed Ion Linac for EIC
Linear Colliders Lecture 2 Subsystems I
with contributions from
MEBT1&2 design study for C-ADS
Physics Design on Injector I
CEPC Injector positron source
Injector Experimental Results John Schmerge, SSRL/SLAC April 24, 2002
CEPC injector beam dynamics
CEPC Injector Linac beam dynamics
Polarized Positrons in JLEIC
J. Seeman Perugia Super-B Meeting June 2009
CEPC injector beam dynamics
Possibility of MEIC Arc Cell Using PEP-II Dipole
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Presentation transcript:

Capture and Transmission of polarized positrons from a Compton Scheme A. VIVOLI*, B. MOUTON, A. VARIOLA, O. DADOUN (LAL/IN2P3-CNRS), R. CHEHAB (IPNL &LAL/IN2P3-CNRS), Orsay, France * E-mail : vivoli@lal.in2p3.fr

CONTENTS General scheme of the positron source Scheme of the Capture Section Working of the elements Simulations of different cases of positrons production and capture Comparison of results Conclusions & Future tasks 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Positron Source g Target Diaphragm ERL Scheme e- e+ e-,g e- e+ Compton cavities Up to 5 GeV superconducting linac with quadrupole focusing Target 1.3 to 1.8 GeV superconducting linac Capture Section with solenoid (+ Bunch Compressor) Up to 150 MeV Damping Ring e- injector + Bunch Compressor 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Compton Production Nd:YaG laser (l=1.064 mm) High Gain Fabry-Perot cavity Crossing angle : 8 degrees Distance between Compton interaction point and target : 10 m. Bunch charge : 1.5 nC RMS bunch length : 1 ps. e- bunch energy : 1.0 - 1.8 GeV. Simulations of Compton Scattering are made with CAIN 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Diaphragmation Target Maximum angle allowed : Jp = 0.4 mrad 3 m 3 m Target : f = 3 cm 5 mm 5 mm Collision point Target Energy Acceptance 1.0 GeV 0.51 1.3 GeV 0.61 1.5 GeV 0.67 1.8 GeV 0.73 Maximum angle allowed : Jp = 0.4 mrad 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Simulation: 1.3 GeV (I) Without Diaphragm With Diaphragm 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Simulation : 1.3 GeV (II) Without Diaphragm With Diaphragm 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Simulation: 1.3 GeV (III) Beam radius (rms): r = 10.4 mm (Photons) Without Diaphragm Beam radius (rms): r = 10.4 mm Mean Energy : E = 14,7 MeV With Diaphragm Beam radius (rms) : r = 2.3 mm Mean Energy : E = 20.9 MeV Number of photons simulated : 10000 Polarization agreement : x3 = +1 indicates right circular polarization 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Positron Production (1.3 GeV no D) Target material : W Target thickness : l = 0.4 X0 = 1.4 mm Number of e+ : 549 Mean energy : 10.51 MeV Polarization : <x3> = 40% Simulation made with EGS4 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Positron Polarization x3 Energy (MeV) 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Capture Section (+ B.C.) g Adiabatic Matching Device Bunch Compressor Pre-accelerator Target From Compton Cavities e- To the accelerator g g e+ Bending Magnets Drifts Solenoid Cavities Magnetic field Electric field 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Adiabatic Matching Device Length: L = 50 cm Magnetic field at the target : B0 = 6 T Magnetic field at the end : B(L) = 0.5 T Magnetic Field Behaviour : 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Beam parameters n. e+ ex (rms) mm mrad ey (rms) mm mrad <E> MeV Parameters of the positron beam at the exit of the target (z = 0 cm) and at the exit of the AMD (z = 50 cm) n. e+ ex (rms) mm mrad ey (rms) mm mrad <E> MeV DE/<E> % DL (rms) mm <x3> 410 2140 3400 11.79 46.52 0.30 46.94 291 765 769 11.46 47.64 9.16 48.01 Z = 0 Z = 50 Capture efficiency : 71,0 % 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Captured Positron Beam 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Pre-accelerator Solenoid Magnetic Field = 0.5 T Length = ~ 31 m Accelerating Cavities: Length = 1.25 m Aperture = 2.3 cm Average accelerating Field = ~ 7 MV/m Number of cavities = 22 Drift length between cavities = 13 cm 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Beam parameters II n. e+ ex (rms) mm mrad ey (rms) mm mrad Parameters of the positron beam at the exit of the AMD (z = 50 cm) and at the exit of the solenoid (z = 3085 cm) n. e+ ex (rms) mm mrad ey (rms) mm mrad <E> MeV DE/<E> % DL (rms) mm <x3> 291 765 769 11.46 47.64 9.16 48.01 215 34 32 152.43 7.55 10.34 49.43 Z = 50 Z = 3085 Loss percentage : 26,12 % 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Bunch Compressor Bending Magnets Length = 35 cm Bending angle = 18,50 deg. Magnetic field intensity = 4.6 KG Straight edges Drift length between magnets = 20 cm 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Beam parameters III n. e+ ex (rms) mm mrad ey (rms) mm mrad Parameters of the positron beam at the exit of the solenoid (z = 3085 cm) and of the Capture Section (z = 3436 cm) n. e+ ex (rms) mm mrad ey (rms) mm mrad <E> MeV DE/<E> % DL (rms) mm <x3> 215 34 32 152.43 7.55 10.34 49.43 205 31 152.34 7.39 5.85 48.94 Z= 3085 Z= 3436 Total capture efficiency ~ 2,05 % 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Polarization (I) Assumption : polarization is conserved in the transport line 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Polarization (II) Energy cut (MeV) Capture eff. (%) Polarization (%) 2.05 48.9 5 1.86 55.6 10 1.26 70.1 15 0.62 85.0 20 0.18 93.1 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

5 GeV superconducting LINAC Quadrupoles length : L = 10 – 20 cm Field at pole tip : B = 3 – 8 KG Quadrupoles aperture : R = 5 cm Cavities length : l = 1.25 m Mean accelerating field : E = 10 MV/m Cavities aperture : r = 3.5 cm 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

RESULTS (I) 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

RESULTS (II) 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Conclusions Increasing the energy of the e- beam for the Compton scattering the capture efficiency increases nearly linearly (from 0.9% for 1.0 GeV to 4% for 1.8 GeV) but the total polarization is affected. (from ~60% to ~ 30%) At 5 GeV (injection in the Damping Ring) the energy spread is ~ 0.2 %, bunch length ~ 6-7 mm, emittance < 1 mm mrad. Gamma photon diaphragm does not seems to be determinant. Bunch compression ~ 2. Further improvement in optimization will be studied. Energy selection of the e+ may be considered to increase polarization at expenses of capture efficiency.(5-10 MeV) 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

Future tasks Parameters optimization Polarization selection (diaphragm in the bunch compressor?) Thin target (for CW ERL multiple stacking injection) Polarization transport Longitudinal phase space capture optimisation (capture cavity closer?) 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme

THANKS. The End 03/12/2018 A. Vivoli, Capture & Transmission of polarized positrons from a Compton Scheme