arvard.edu/phot o/2007/m51/. Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang,

Slides:



Advertisements
Similar presentations
Hot Gas in Damped Lyman- Systems Hidden Baryons & Metals in Galactic Halos at z=2-4 Andrew Fox (ESO-Chile) with P. Petitjean, C. Ledoux, R. Srianand, J.
Advertisements

Observational Constraints on Hot Gas Accretion Joel Bregman University of Michigan Collaborators: Mike Anderson, Xinyu Dai.
Fluorescent Processes Research School of Astronomy & Astrophysics Fluorescent Processes Feeding The Beast: Infall, Mergers or Starbursts? Mike Dopita (ANU)
The W i d e s p r e a d Influence of Supermassive Black Holes Christopher Onken Herzberg Institute of Astrophysics Christopher Onken Herzberg Institute.
Cosmic Baryons: The IGM Ue-Li Pen 彭威禮. Overview History of Cosmic Baryons: a gas with phase transitions Missing baryons simulations SZ-Power spectrum:
GALAXIES IN DIFFERENT ENVIRONMENTS: VOIDS TO CLUSTERS:  Simulations will require to model full physics:  Cooling, heating, star formation feedbacks…
Front X-ray Studies of Galaxies and Galaxy Systems Jesper Rasmussen Ph.D. Defence Astronomical Observatory, Univ. of Copenhagen 17th March 2004.
Numerical issues in SPH simulations of disk galaxy formation Tobias Kaufmann, Lucio Mayer, Ben Moore, Joachim Stadel University of Zürich Institute for.
Dark Halos of Fossil Groups and Clusters Observations and Simulations Ali Dariush, Trevor Ponman Graham Smith University of Birmingham, UK Frazer Pearce.
Early Evolution of Massive Galaxies Romeel Davé Kristian Finlator Ben D. Oppenheimer University of Arizona.
Searching for the large-scale hot gaseous Galactic halo --Observations confront theories Yangsen Yao in collaboration with Michael A. Nowak Q. Daniel Wang.
HOT TIMES FOR COOLING FLOWS Mateusz Ruszkowski. Cooling flow cluster Non-cooling flow cluster gas radiates X-rays & loses pressure support against gravity.
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
How Galaxies Assemble Romeel Davé, Univ. of Arizona With: Dušan Kereš & Neal Katz (U.Mass), and David Weinberg (Ohio State)
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
Three-dimensional hydrodynamical simulations of ISM pollution by type Ia and II supernovae in forming dwarf spheroidal galaxies Andrea Marcolini (Bologna.
Simulating the Cooling Flow of Cool-Core Clusters Yuan Li Advisor: Greg Bryan Department of Astronomy, Columbia University July 2011.
RECOILING BLACK HOLES IN GALACTIC CENTERS Michael Boylan-Kolchin, Chung-Pei Ma, and Eliot Quataert (UC Berkeley) astro-ph/
How Do Supermassive Black Holes Get Starved? Q. D. Wang, Z. Y. Li, S.-K. Tang University of Massachusetts B. Wakker University of Wisconsin.
Outflows and Feedback Smita Mathur Ohio State [Yair Krongold et al ApJ 659, 1022]
Krakow 2010 Galactic magnetic fields: MRI or SN-driven dynamo? Detlef Elstner Oliver Gressel Natali Dziourkevich Alfio Bonanno Günther Rüdiger.
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
Galaxy Clusters Perseus Cluster in X-rays. Why study clusters? Clusters are the largest virialized objects in the Universe. Cosmology: tail of density.
PRESIDENCY UNIVERSITY
Missing baryons and missing metals in galaxies: clues from the Milky Way Smita Mathur The Ohio State University With Anjali Gupta, Yair Krongold, Fabrizio.
Estimate* the Total Mechanical Feedback Energy in Massive Clusters Bill Mathews & Fulai Guo University of California, Santa Cruz *~ ±15-20% version 2.
1.Extraplanar diffuse X-ray emission – a survey of highly inclined disk galaxies –How is the emission correlated with galaxy properties? –How are observations.
A.Kravtsov (U.Chicago) D. Ceverino (NMSU) O. Valenzuela (U.Washington) G. Rhee (UNLV) F. Governato, T.Quinn, G.Stinson (U.Washington) J.Wadsley (McMaster,
Cosmological formation of elliptical galaxies * Thorsten Naab & Jeremiah P. Ostriker (Munich, Princeton) T.Naab (USM), P. Johannson (USM), J.P. Ostriker.
Circulation Flows Fabrizio Brighenti (Bologna) David Buote (UC Irvine) Cooling flows with bubble return ! Bill Mathews (UC Santa Cruz)
Evolution in Lyman-alpha Emitters and Lyman-break Galaxies Masao Mori Theoretical Astrophysics division, Center for Computational Sciences, University.
AGN downsizing は階層的銀河形成論で 説明できるか? Motohiro Enoki Tomoaki Ishiyama (Tsukuba Univ.) Masakazu A. R. Kobayashi (Ehime Univ.) Masahiro Nagashima (Nagasaki Univ.)
Superbubble Driven Outflows in Cosmological Galaxy Evolution Ben Keller (McMaster University) James Wadsley, Hugh Couchman CASCA 2015 Paper: astro-ph:
Galaxy Formation and Evolution Chris Brook Modulo 15 Room 509
About the 8 keV plasma at the Galactic Center CEA, Saclay Belmont R. Tagger M. UCLA Muno M. Morris M. Cowley S. High Energy Phenomena in the Galactic Center.
The Environments of Galaxies: from Kiloparsecs to Megaparsecs August 2004 Cool Cores in Galaxy Groups Ewan O’Sullivan Harvard-Smithsonian Center for Astrophysics.
Cosmological Galaxy Formation
The Warm-hot Gaseous Halo of the Milky Way Smita Mathur The Ohio State University With Anjali Gupta, Yair Krongold, Fabrizio Nicastro, M. Galeazzi.
Accretion in Early-Type Galaxies Haiguang Xu Department of Physics Shanghai Jiao Tong University
Hot gas in galaxy pairs Olga Melnyk. It is known that the dark matter is concentrated in individual haloes of galaxies and is located in the volume of.
The interaction between galaxies and their environment Trevor Ponman University of Birmingham Jesper Rasmussen Carnegie Observatories.
Quiz 3 Briefly explain how a low-mass star becomes hot enough to settle on the main-sequence. Describe what is solar weather and list two ways in which.
Stellar Feedback Effects on Galaxy Formation Filippo Sigward Università di Firenze Dipartimento di Astronomia e Scienza dello Spazio Japan – Italy Joint.
Does Gas Cool From the Hot Phase? (onto galaxies) The MPA/ESO/MPE/USM 2007 Joint Astronomy Conference Gas Accretion and Star Formation in Galaxies Joel.
A Panoramic HST Infrared View of the Galactic Center Q. D. Wang, H. Dong, D. Calzetti (UMass), A. Cotera (SETI), S. Stolovy, M. Muno, J. Mauerhan, (Caltech/IPAC/JPL),
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Baryon content of galaxy groups Ming Sun (University of Virginia) ‏ M. Voit, M. Donahue (MSU) A. Vikhlinin, W. Forman, C. Jones (CfA) N. Sehgal (KIPAC)
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
1 Galaxy Formation A quick overview of the key concepts.
Feedback Observations and Simulations of Elliptical Galaxies –Daniel Wang, Shikui Tang, Yu Lu, Houjun Mo (UMASS) –Mordecai Mac-Low (AMNH) –Ryan Joung (Princeton)
Energy Balance in Clusters of Galaxies Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder X-ray.
RGS observations of cool gas in cluster cores Jeremy Sanders Institute of Astronomy University of Cambridge A.C. Fabian, J. Peterson, S.W. Allen, R.G.
The influence of baryons on the matter distribution and shape of dark matter halos Weipeng Lin , Yipeng Jing ( Shanghai Astronomical Observatory , CAS.
Recent Progress in Understanding X-ray Emission From Early-type Galaxies: The Hot Gas Component Jimmy A. Irwin University of Michigan X-rays From Nearby.
Lyman Alpha Spheres from the First Stars observed in 21 cm Xuelei Chen (Beijing) Jordi Miralda Escudé (IEEC, Barcelona).
JEREMY S. RITTER, MILOS MILOSAVLJEVIC, AND VOLKER BROMM Population III Stars HII Regions Supernovae Discussion The University of Texas at Austin LEFT:
SPH Simulations of the Galaxy Evolution NAKASATO, Naohito University of Tokyo.
© 2010 Pearson Education, Inc. Galaxies. © 2010 Pearson Education, Inc. Hubble Deep Field Our deepest images of the universe show a great variety of galaxies,
Imaging Dust in Starburst Outflows with GALEX Charles Hoopes Tim Heckman Dave Strickland and the GALEX Science Team March 7, 2005 Galactic Flows: The Galaxy/IGM.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Arman Khalatyan AIP 2006 GROUP meeting at AIP. Outline What is AGN? –Scales The model –Multiphase ISM in SPH SFR –BH model Self regulated accretion ?!
BULGE FRACTION AND DISTRIBUTION OF STAR FORMATION IN SAMI GALAXIES Greg Goldstein PhD student, Dept of Physics and Astronomy, Macquarie University Supervisors:
Jesper Rasmussen (Univ. of Birmingham)
Winds Driven by Massive Star Clusters
The formation and dynamical state of the brightest cluster galaxies
By : Sydney Duncan Advisor: Dr. Ferah Munshi 7/30/2015
Exploring Galactic Scaling Relations with Numerical Simulations
Feedback from Massive Stellar Clusters in Starbursts (Poster 7)
The X-ray Morphology and Spectra of Galactic Disks
Borislav Nedelchev et al. 2019
Presentation transcript:

arvard.edu/phot o/2007/m51/

Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang, Shikui Tang, Yu Lu, Houjun Mo (UMass) Mordecai Mac-Low (AMNH), Ryan Joung (Princeton) NGC 4697: X-ray intensity contours 3-D stellar feedback simulation

Key questions to address Why do elliptical galaxies evolve passively? Understanding of the color bi-modality of galaxy evolution What is the role of stellar feedback? Mass loss from evolved stars: ~ 0.2 M /10 10 L B /yr Energy input from Ia SNe: ~ 0.2 /10 10 L B /100yr + velocity dispersion among stars Fe abundance ~Z * +5(M SN /0.7M sun ) Specific temperature: k T ~ 1-2 kev traced by X-ray

Observations of stellar feedback Both gas temperature and Fe abundance are less than the expected. Bregman et al (2004) Humphrey & Buote (2006) OSullivan & Ponman (2004), Irwin et al (2001), Irwin (2008)

Observations of stellar feedback Observed Lx is <10% of the energy inputs for low and intermediate mass ellipticals Large scattering in L X for galaxies of same stellar mass Mass of diffuse hot gas ~ 10 6 – 10 7 M, can be replenished within 10 8 yrs Hardly any accumulation of hot gas! David et al (2006) AGN SNe

Gone with the wind? The overall dynamics of hot gas may be described by a 1-D wind model (e.g., Ciotti et al. 1991) But it is inconsistent with the observations: Too high Temperature, fixed by the specific energy input Too steep radial X-ray intensity profile Too small Lx (by a factor > 10) with little dispersion Too high Fe abundance X-ray emission is sensitive to the structure in density, temperature, and metal distributions. Can 3-D effects alleviate these inconsistencies?

Galactic wind: 3-D simulations Initialized from a 1-D solution for a 5 x M sun spheroid Adaptive mesh refinement ~2 pc spatial resolution Continuous and smooth mass injection, following stellar light Sporadic Sne in both time and space 10x10x10 kpc 3 Box Density snapshot Tang, Wang, et al 2009a Tang & Wang 2009

3-D effects Broad temperature and density distributions Lower metal abundance if modeled with a 1- or 2-T plasma by a factor of 2-3 X-ray measured temperature is a factor of ~2 lower Overall Lx is enhanced by a factor of ~ 3. Differential Emission Measure

Galactic wind model limitations Only reasonable for low-mass galaxies, where wind materials can escape. For more massive galaxies Hot gas may not be able to escape from the dark matter halo IGM accretion needs to be considered Hot gas properties thus depend on the environment and galaxy history.

Feedback and galaxy formation: 1-D simulations Evolution of both dark and baryon matters (with the final total mass of M ) Initial spheroid formation (5x10 10 M ) starburst shock-heating and expanding of surrounding gas Later Type Ia SNe wind/outflow, maintaining a low-density, high-T gas halo and preventing a cooling flow The wind can be shocked at a large radius. Tang, Wang, et al 2009b z=1.4 z=0.5 z=0

Dependence of outflow dynamics on the feedback strength, galaxy mass, and environment For an intermediate mass galaxy, the wind may have evolved into a subsonic outflow. This outflow can be stable and long-lasting higher Lx and more extended profile, as indicated by the observations.

Starting from a 1-D outflow simulation 3-D Lx is a factor of ~5 higher Fe ejecta moves much faster than stellar mass-loss materials. Fe abundance map Tang & Wang in prep Subsonic Outflow: 3-D Simulations

3-D Subsonic Outflow Simulations: Results Positive temperature gradient, mimicking a cooling flow! 1-D wind model 1-D outflow model 3-D simulation Positive Fe abundance gradient, as observed in central regions of ellipticals 3-D results

Conclusions Hot gas in (low- and intermediate mass) ellipticals is likely in outflows (mostly subsonic) driven by Ia SNe 1-D supersonic wind model cannot explain observed diffuse X-ray emission 3-D structures significantly affect X-ray measurements (Lx, T, intensity profile, and Fe abundance) Stellar feedback can play a key role in galaxy evolution: Initial burst leads to the heating and expansion of gas beyond the virial radius Ongoing feedback can keep the circum-galactic medium from cooling and maintain a hot halo passive evolution of such galaxies.

Galaxies such as the MW evolves in hot bubbles of baryon deficit! Explains the lack of large-scale X- ray halos. Bulge wind drives away the present stellar feedback. Hot gas Total baryon before the SB Total baryon at present Cosmologi cal baryon fraction

Hot gas in the M31 bulge L (0.5-2 keV) ~ erg/s ~1% of the SN mechanical energy input! T ~ 0.3 keV ~10 times lower than expected from Type Ia heating and mass-loss from evolved stars! Mental abundance ~ solar inconsistent with the SN enrichment! Li & Wang (2007); Li, Wang, Wakker (2009); Bogdan & Gilfanov 2008 IRAC 8 micro, K-band, keV