Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S

Slides:



Advertisements
Similar presentations
The zonal architecture of human articular cartilage described by T2 relaxation time in the presence of Gd-DTPA2−  Jatta E. Kurkijärvi, Mikko J. Nissi,
Advertisements

T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I
Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage  A.-C. Bay-Jensen,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Diffusion of Gd-DTPA2− into articular cartilage
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Next-generation Sequencing Identifies Articular Cartilage and Subchondral Bone Mirnas after ESWT on Early Osteoarthritis Knee  C.-J. Wang, J.-H. Cheng,
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
Differential accumulation of lead and zinc in double-tidemarks of articular cartilage  A. Roschger, J.G. Hofstaetter, B. Pemmer, N. Zoeger, P. Wobrauschek,
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Proteoglycan synthesis in bovine articular cartilage explants exposed to different low- frequency low-energy pulsed electromagnetic fields  M. De Mattei,
M.L. Hall, D.A. Krawczak, N.K. Simha, J.L. Lewis 
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
X. Zhu, Y. Tang, J. Chen, S. Xiong, S. Zhuo, J. Chen 
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
H. Shao, C. Pauli, S. Li, Y. Ma, A. S. Tadros, A. Kavanaugh, E. Y
The layered structure of the articular surface
Functional assessment of strains around a full-thickness and critical sized articular cartilage defect under compressive loading using MRI  L. Zevenbergen,
R. Mahmoodian, J. Leasure, P. Philip, N. Pleshko, F. Capaldi, S
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
3D histopathological grading of osteochondral tissue using contrast-enhanced micro- computed tomography  H.J. Nieminen, H.K. Gahunia, K.P.H. Pritzker,
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
UTE bi-component analysis of T2* relaxation in articular cartilage
H. J. Nieminen, T. Ylitalo, S. Kauppinen, E. Hæggström, M. Finnilä, S
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
Nonlinear optical microscopy of articular cartilage
A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.
K. Rahunen, L. Rieppo, P. Lehenkari, M. Finnilä, S. Saarakkala 
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development  A.R.
Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient  R. Krishnan, M. Caligaris, R.L. Mauck, C.T.
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Lead accumulation in tidemark of articular cartilage
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Presentation transcript:

Clustering of infrared spectra reveals histological zones in intact articular cartilage  Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S. Jurvelin, Hanna Isaksson  Osteoarthritis and Cartilage  Volume 20, Issue 5, Pages 460-468 (May 2012) DOI: 10.1016/j.joca.2012.01.014 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 (A) A schematic representation of the articular cartilage structure (modified from43). The superficial zone (SZ), middle zone (MZ), deep zone (DZ) and calcified zone (CZ) of the tissue are indicated; (B) A typical FTIR microspectroscopy spectrum of rabbit and bovine articular cartilage. Spectral peaks of interest are indicated (amide I, amide II, amide III and proteoglycan). Spectra are scaled so that the maximum value of the amide I peak (1585–1720 cm-1) equals one; (C) Pre-processing steps. Bone spectra and outliers were removed from the images using principal component analysis (PCA). The first, most discriminative, PCA image was built based on the proteoglycan (968–1140 cm−1) region of infrared spectra and clustered using the fuzzy c-means algorithm. Pixels assigned to bone and outliers were removed. Integrated collagen absorbance images show the sample before and after preprocessing. Osteoarthritis and Cartilage 2012 20, 460-468DOI: (10.1016/j.joca.2012.01.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Fuzzy C-means clustering results for one rabbit sample based on the (A) amide and (B) proteoglycan (PG) spectral regions. The integrated absorbance images, corresponding false-color clustering maps and mean spectra for each cluster are shown for each spectral region. The toluidine blue stained histological image is shown as a reference. Osteoarthritis and Cartilage 2012 20, 460-468DOI: (10.1016/j.joca.2012.01.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Fuzzy C-means clustering results for one bovine sample based on the (A) amide and (B) proteoglycan (PG) spectral regions. The integrated absorbance images, corresponding false-color clustering maps and mean spectra for each cluster are shown for each spectral region. The safranin O stained histological image is shown as a reference. Osteoarthritis and Cartilage 2012 20, 460-468DOI: (10.1016/j.joca.2012.01.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Fuzzy clustering maps of a (A) rabbit and (B) bovine samples, obtained using the amide spectral region. Degrees of membership for each pixel to each of the three clusters are given, and gradual transition between clusters is revealed. The “hard” clustering map was calculated based on fuzzy map, so each pixel is assigned to the cluster with the maximum membership value. Osteoarthritis and Cartilage 2012 20, 460-468DOI: (10.1016/j.joca.2012.01.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Mean normalize raw spectra of clusters of (A) rabbit and (B) bovine samples. Magnified images show shape differences in spectra on AI and AII regions. Spectral differences between clusters are enhanced by the corresponding second derivative spectra for (C) rabbit and (D) bovine samples. Osteoarthritis and Cartilage 2012 20, 460-468DOI: (10.1016/j.joca.2012.01.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 (A) Average integrated peak areas of AI, AII, proteoglycan (PG) and (B) average PG/AI and AI/AII ratios, for each of the three clusters. The data is shown as medians with 95% confidence interval of from all the seven rabbit AC samples. Significant differences based on the Mann–Whitney U test are indicated. Osteoarthritis and Cartilage 2012 20, 460-468DOI: (10.1016/j.joca.2012.01.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 (A, B) Histological sections and corresponding (C, D) parallelism index of collagen fibers calculated from polarized light microscopy (PLM) images for one rabbit and one bovine samples6,28. The arrow indicates an extra lamina in the bovine sample. Parallelism index6 of 1 corresponds to completely parallel and 0 corresponds to completely random orientation of fibers inside one particular pixel. (E) The magnified image displays the histological zones of articular cartilage determined by PLM. (F, G) FCM maps of the rabbit and bovine samples show good correspondence between clustering and PLM images. Osteoarthritis and Cartilage 2012 20, 460-468DOI: (10.1016/j.joca.2012.01.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions