Lecture: Cache Innovations, Virtual Memory

Slides:



Advertisements
Similar presentations
Lecture 19: Cache Basics Today’s topics: Out-of-order execution
Advertisements

1 Lecture 17: Large Cache Design Papers: Managing Distributed, Shared L2 Caches through OS-Level Page Allocation, Cho and Jin, MICRO’06 Co-Operative Caching.
1 Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache and Prefetch Buffers By Sreemukha Kandlakunta Phani Shashank.
CSE 490/590, Spring 2011 CSE 490/590 Computer Architecture Cache III Steve Ko Computer Sciences and Engineering University at Buffalo.
1 Adapted from UCB CS252 S01, Revised by Zhao Zhang in IASTATE CPRE 585, 2004 Lecture 14: Hardware Approaches for Cache Optimizations Cache performance.
1 Lecture 20: Cache Hierarchies, Virtual Memory Today’s topics:  Cache hierarchies  Virtual memory Reminder:  Assignment 8 will be posted soon (due.
Spring 2003CSE P5481 Introduction Why memory subsystem design is important CPU speeds increase 55% per year DRAM speeds increase 3% per year rate of increase.
CS Lecture 10 Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache and Prefetch Buffers N.P. Jouppi Proceedings.
1 Lecture 12: Cache Innovations Today: cache access basics and innovations (Sections )
1 Lecture 14: Cache Innovations and DRAM Today: cache access basics and innovations, DRAM (Sections )
1 Lecture 18: Large Caches, Multiprocessors Today: NUCA caches, multiprocessors (Sections ) Reminder: assignment 5 due Thursday (don’t procrastinate!)
1 Lecture 14: Virtual Memory Topics: virtual memory (Section 5.4) Reminders: midterm begins at 9am, ends at 10:40am.
1 Lecture 15: Virtual Memory and Large Caches Today: TLB design and large cache design basics (Sections )
1 Lecture 16: Virtual Memory Today: DRAM innovations, virtual memory (Sections )
1 Lecture 16: Large Cache Innovations Today: Large cache design and other cache innovations Midterm scores  91-80: 17 students  79-75: 14 students 
Lecture 17: Virtual Memory, Large Caches
1 Lecture 13: Cache Innovations Today: cache access basics and innovations, DRAM (Sections )
1 Lecture 14: Virtual Memory Today: DRAM and Virtual memory basics (Sections )
1 Lecture 11: Large Cache Design Topics: large cache basics and… An Adaptive, Non-Uniform Cache Structure for Wire-Dominated On-Chip Caches, Kim et al.,
1 Lecture 21: Virtual Memory, I/O Basics Today’s topics:  Virtual memory  I/O overview Reminder:  Assignment 8 due Tue 11/21.
1 Lecture 15: Large Cache Design Topics: innovations for multi-mega-byte cache hierarchies Reminders:  Assignment 5 posted.
1 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value is stored as a charge.
1 Lecture: Cache Hierarchies Topics: cache innovations (Sections B.1-B.3, 2.1)
1 Lecture 16: Cache Innovations / Case Studies Topics: prefetching, blocking, processor case studies (Section 5.2)
1 Lecture: Large Caches, Virtual Memory Topics: cache innovations (Sections 2.4, B.4, B.5)
1 Lecture 13: Cache, TLB, VM Today: large caches, virtual memory, TLB (Sections 2.4, B.4, B.5)
1 Lecture 14: DRAM Main Memory Systems Today: cache/TLB wrap-up, DRAM basics (Section 2.3)
Chapter 5 Memory III CSE 820. Michigan State University Computer Science and Engineering Miss Rate Reduction (cont’d)
Nov. 15, 2000Systems Architecture II1 Machine Organization (CS 570) Lecture 8: Memory Hierarchy Design * Jeremy R. Johnson Wed. Nov. 15, 2000 *This lecture.
1 Lecture: Cache Hierarchies Topics: cache innovations (Sections B.1-B.3, 2.1)
Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache And Pefetch Buffers Norman P. Jouppi Presenter:Shrinivas Narayani.
1 Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4.
1 Lecture: Virtual Memory Topics: virtual memory, TLB/cache access (Sections 2.2)
1 Lecture: Large Caches, Virtual Memory Topics: cache innovations (Sections 2.4, B.4, B.5)
CMSC 611: Advanced Computer Architecture
Lecture: Large Caches, Virtual Memory
Associativity in Caches Lecture 25
Lecture: Large Caches, Virtual Memory
Multilevel Memories (Improving performance using alittle “cash”)
Lecture: Cache Hierarchies
Cache Memory Presentation I
Lecture: Large Caches, Virtual Memory
Lecture: Cache Hierarchies
Lecture 23: Cache, Memory, Security
Lecture 13: Large Cache Design I
Lecture 21: Memory Hierarchy
Lecture 21: Memory Hierarchy
Lecture 12: Cache Innovations
Lecture: DRAM Main Memory
Lecture 23: Cache, Memory, Virtual Memory
Lecture 14: Reducing Cache Misses
Lecture 17: Case Studies Topics: case studies for virtual memory and cache hierarchies (Sections )
Lecture 22: Cache Hierarchies, Memory
Lecture: DRAM Main Memory
Lecture 24: Memory, VM, Multiproc
Adapted from slides by Sally McKee Cornell University
Chapter 5 Exploiting Memory Hierarchy : Cache Memory in CMP
Lecture 15: Memory Design
Lecture 22: Cache Hierarchies, Memory
Lecture 11: Cache Hierarchies
Summary 3 Cs: Compulsory, Capacity, Conflict Misses Reducing Miss Rate
Lecture: Cache Hierarchies
Lecture 21: Memory Hierarchy
Lecture 24: Virtual Memory, Multiprocessors
Lecture 23: Virtual Memory, Multiprocessors
Principle of Locality: Memory Hierarchies
Lecture 13: Cache Basics Topics: terminology, cache organization (Sections )
Lecture 14: Cache Performance
Sarah Diesburg Operating Systems COP 4610
Presentation transcript:

Lecture: Cache Innovations, Virtual Memory Topics: cache innovations (Sections 2.4, B.4, B.5), virtual memory intro

Types of Cache Misses Compulsory misses: happens the first time a memory word is accessed – the misses for an infinite cache Capacity misses: happens because the program touched many other words before re-touching the same word – the misses for a fully-associative cache Conflict misses: happens because two words map to the same location in the cache – the misses generated while moving from a fully-associative to a direct-mapped cache Sidenote: can a fully-associative cache have more misses than a direct-mapped cache of the same size?

What Influences Cache Misses? Compulsory Capacity Conflict Increasing cache capacity Increasing number of sets Increasing block size Increasing associativity

Reducing Miss Rate Large block size – reduces compulsory misses, reduces miss penalty in case of spatial locality – increases traffic between different levels, space waste, and conflict misses Large cache – reduces capacity/conflict misses – access time penalty High associativity – reduces conflict misses – rule of thumb: 2-way cache of capacity N/2 has the same miss rate as 1-way cache of capacity N – more energy

More Cache Basics L1 caches are split as instruction and data; L2 and L3 are unified The L1/L2 hierarchy can be inclusive, exclusive, or non-inclusive On a write, you can do write-allocate or write-no-allocate On a write, you can do writeback or write-through; write-back reduces traffic, write-through simplifies coherence Reads get higher priority; writes are usually buffered L1 does parallel tag/data access; L2/L3 does serial tag/data

Tolerating Miss Penalty Out of order execution: can do other useful work while waiting for the miss – can have multiple cache misses -- cache controller has to keep track of multiple outstanding misses (non-blocking cache) Hardware and software prefetching into prefetch buffers – aggressive prefetching can increase contention for buses

Techniques to Reduce Cache Misses Victim caches Better replacement policies – pseudo-LRU, NRU Prefetching, cache compression

Victim Caches A direct-mapped cache suffers from misses because multiple pieces of data map to the same location The processor often tries to access data that it recently discarded – all discards are placed in a small victim cache (4 or 8 entries) – the victim cache is checked before going to L2 Can be viewed as additional associativity for a few sets that tend to have the most conflicts

Replacement Policies Pseudo-LRU: maintain a tree and keep track of which side of the tree was touched more recently; simple bit ops NRU: every block in a set has a bit; the bit is made zero when the block is touched; if all are zero, make all one; a block with bit set to 1 is evicted

Prefetching Hardware prefetching can be employed for any of the cache levels It can introduce cache pollution – prefetched data is often placed in a separate prefetch buffer to avoid pollution – this buffer must be looked up in parallel with the cache access Aggressive prefetching increases “coverage”, but leads to a reduction in “accuracy”  wasted memory bandwidth Prefetches must be timely: they must be issued sufficiently in advance to hide the latency, but not too early (to avoid pollution and eviction before use)

Stream Buffers Simplest form of prefetch: on every miss, bring in multiple cache lines When you read the top of the queue, bring in the next line L1 Sequential lines Stream buffer

Stride-Based Prefetching For each load, keep track of the last address accessed by the load and a possibly consistent stride FSM detects consistent stride and issues prefetches incorrect init steady correct correct incorrect (update stride) PC tag prev_addr stride state correct correct trans no-pred incorrect (update stride) incorrect (update stride)

Shared Vs. Private Caches in Multi-Core What are the pros/cons to a shared L2 cache? P1 P2 P3 P4 P1 P2 P3 P4 L1 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2

Shared Vs. Private Caches in Multi-Core Advantages of a shared cache: Space is dynamically allocated among cores No waste of space because of replication Potentially faster cache coherence (and easier to locate data on a miss) Advantages of a private cache: small L2  faster access time private bus to L2  less contention

UCA and NUCA The small-sized caches so far have all been uniform cache access: the latency for any access is a constant, no matter where data is found For a large multi-megabyte cache, it is expensive to limit access time by the worst case delay: hence, non-uniform cache architecture

Large NUCA Issues to be addressed for Non-Uniform Cache Access: Mapping Migration Search Replication CPU

Shared NUCA Cache A single tile composed of a core, L1 caches, and a bank (slice) of the shared L2 cache Core 0 Core 1 Core 2 Core 3 L1 D$ L1 I$ L1 D$ L1 I$ L1 D$ L1 I$ L1 D$ L1 I$ L2 $ L2 $ L2 $ L2 $ Core 4 Core 5 Core 6 Core 7 The cache controller forwards address requests to the appropriate L2 bank and handles coherence operations L1 D$ L1 I$ L1 D$ L1 I$ L1 D$ L1 I$ L1 D$ L1 I$ L2 $ L2 $ L2 $ L2 $ Memory Controller for off-chip access

Virtual Memory Processes deal with virtual memory – they have the illusion that a very large address space is available to them There is only a limited amount of physical memory that is shared by all processes – a process places part of its virtual memory in this physical memory and the rest is stored on disk Thanks to locality, disk access is likely to be uncommon The hardware ensures that one process cannot access the memory of a different process

Address Translation The virtual and physical memory are broken up into pages 8KB page size Virtual address 13 virtual page number page offset Translated to phys page number Physical address 13 physical page number page offset Physical memory

Title Bullet