Ch. 11 - Gases I. Physical Properties.

Slides:



Advertisements
Similar presentations
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Advertisements

I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described.
I. Physical Properties (p )
Kinetic Molecular Theory. What if… b Left a basketball outside in the cold… would the ball appear to be inflated or deflated? b Which picture box do you.
Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
2 CHAPTER 12 GASES The Gas Laws u Describe HOW gases behave. u Can be predicted by the theory. u Amount of change can be calculated with mathematical.
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Ch Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Physical Properties Ch. 10 & 11 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Ch Gases.  To describe a gas fully you need to state 4 measurable quantities:  Volume  Temperature  Number of molecules  pressure.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
C. Johannesson CHARACTERISTICS OF GASES Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction.
The Gas Laws Ch. 14- Gases. Boyle’s Law P V PV = k Pressure and Volume are inversely proportional. As Volume increased, pressure decreases.
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
I. Physical Properties I. Gases I. Gases. Nature of Gases b Gases have mass. b They can be compressed. b They completely fill their containers. b Representative.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
Gases I. Physical Properties.
Ch. 10 – The Mole Molar Conversions.
A. Kinetic Molecular Theory
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
IV. Gas Stoichiometry at Non-STP Conditions (p )
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
Gases.
I. Physical Properties (p )
Gas laws.
Ch Liquids & Solids III. Changes of State C. Johannesson.
The Gas Laws.
Gases Physical Properties.
Unit 8 Gas Laws!.
I. Physical Properties (p )
Gases I. Physical Properties.
I. Physical Properties (p. 303 – 312 in school)
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Chapter 1 Lesson 3 Mrs. Brock RJMS
Ch. 10 & 11 - Gases III. Ideal Gas Law (p , )
IV. Gas Stoichiometry at Non-STP Conditions (p )
Properties and Measuring Variables
IV. Gas Stoichiometry at Non-STP Conditions (p )
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Turn in Work Book 14.1 and 14.2 Get out your notes packet.
IV. Gas Stoichiometry at Non-STP Conditions (p )
III. Ideal Gas Law (p , in class)
Chapter 7-1, 7-2.
III. Ideal Gas Law (p , in class)
Gases and Laws – Unit 2 Version
Presentation transcript:

Ch. 11 - Gases I. Physical Properties

Kinetic Molecular Theory Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each other. have an avg. KE directly related to Kelvin temperature.

Real Gases Particles in a REAL gas… have their own volume attract each other Gas behavior is most ideal… at low pressures at high temperatures in nonpolar atoms/molecules

Characteristics of Gases Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction Gases have very low densities. no volume = lots of empty space

Characteristics of Gases Gases can be compressed. no volume = lots of empty space Gases undergo diffusion & effusion. random motion

Temperature Always use absolute temperature (Kelvin) when working with gases. ºF ºC K -459 32 212 -273 100 273 373 K = ºC + 273

Pressure Which shoes create the most pressure?

Pressure Barometer measures atmospheric pressure Aneroid Barometer Mercury Barometer Aneroid Barometer

Pressure Manometer measures contained gas pressure Bourdon-tube gauge U-tube Manometer Bourdon-tube gauge

Pressure KEY UNITS AT SEA LEVEL 101.325 kPa (kilopascal) 1 atm 760 mm Hg 760 torr 14.7 psi

Standard Temperature & Pressure STP STP Standard Temperature & Pressure 0°C 273 K 1 atm 101.325 kPa -OR-

Boyle’s Law P V PV = k

Boyle’s Law The pressure and volume of a gas are inversely related at constant mass & temp P V PV = k

Charles’ Law V T

Charles’ Law The volume and absolute temperature (K) of a gas are directly related at constant mass & pressure V T

Gay-Lussac’s Law P T

Gay-Lussac’s Law The pressure and absolute temperature (K) of a gas are directly related at constant mass & volume P T

PV T V T P T PV = k P1V1 T1 = P2V2 T2 P1V1T2 = P2V2T1 Combined Gas Law PV T V T P T PV = k P1V1 T1 = P2V2 T2 P1V1T2 = P2V2T1

Gas Law Problems A gas occupies 473 cm3 at 36°C. Find its volume at 94°C. CHARLES’ LAW GIVEN: V1 = 473 cm3 T1 = 36°C = 309K V2 = ? T2 = 94°C = 367K T V WORK: P1V1T2 = P2V2T1 (473 cm3)(367 K)=V2(309 K) V2 = 562 cm3 C. Johannesson

Gas Law Problems A gas occupies 100. mL at 150. kPa. Find its volume at 200. kPa. BOYLE’S LAW GIVEN: V1 = 100. mL P1 = 150. kPa V2 = ? P2 = 200. kPa P V WORK: P1V1T2 = P2V2T1 (150.kPa)(100.mL)=(200.kPa)V2 V2 = 75.0 mL C. Johannesson

Gas Law Problems COMBINED GAS LAW P T V V1 = 7.84 cm3 P1 = 71.8 kPa A gas occupies 7.84 cm3 at 71.8 kPa & 25°C. Find its volume at STP. COMBINED GAS LAW GIVEN: V1 = 7.84 cm3 P1 = 71.8 kPa T1 = 25°C = 298 K V2 = ? P2 = 101.325 kPa T2 = 273 K P T V WORK: P1V1T2 = P2V2T1 (71.8 kPa)(7.84 cm3)(273 K) =(101.325 kPa) V2 (298 K) V2 = 5.09 cm3 C. Johannesson

Gas Law Problems A gas’ pressure is 765 torr at 23°C. At what temperature will the pressure be 560. torr? GAY-LUSSAC’S LAW GIVEN: P1 = 765 torr T1 = 23°C = 296K P2 = 560. torr T2 = ? P T WORK: P1V1T2 = P2V2T1 (765 torr)T2 = (560. torr)(296K) T2 = 217K = -56°C C. Johannesson

Avogadro’s Principle Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any gas V n

UNIVERSAL GAS CONSTANT Ideal Gas Law Merge the Combined Gas Law with Avogadro’s Principle: PV nT PV T V n = k = R UNIVERSAL GAS CONSTANT R=0.0821 Latm/molK C. Johannesson

UNIVERSAL GAS CONSTANT Ideal Gas Law PV=nRT UNIVERSAL GAS CONSTANT R=0.0821 Latm/molK R=8.315 dm3kPa/molK C. Johannesson You don’t need to memorize these values!

Ideal Gas Law Problems P = ? atm n = 0.412 mol T = 16°C = 289 K Calculate the pressure in atmospheres of 0.412 mol of He at 16°C & occupying 3.25 L. GIVEN: P = ? atm n = 0.412 mol T = 16°C = 289 K V = 3.25 L R = 0.0821Latm/molK WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol Latm/molK K P = 3.01 atm C. Johannesson

Ideal Gas Law Problems V = ? n = 85 g T = 25°C = 298 K Find the volume of 85 g of O2 at 25°C and 104.5 kPa. GIVEN: V = ? n = 85 g T = 25°C = 298 K P = 104.5kPa=1.031 atm R = 0.0821 L*atm/molK WORK: 85 g 1 mol = 2.7 mol 32.00 g = 2.7 mol PV = nRT (1.031)V=(2.7) (0.0821) (298) atm mol Latm/molK K V = 64.071L = 64 L (s/fs) C. Johannesson

Gas Stoichiometry Moles  Liters of a Gas: STP - use 22.4 L/mol Non-STP - use ideal gas law Non-STP Given liters of gas? start with ideal gas law Looking for liters of gas? start with stoichiometry conv. C. Johannesson

Gas Stoichiometry Problem What volume of CO2 forms from 5.25 g of CaCO3 at 103 kPa & 25ºC? CaCO3  CaO + CO2 5.25 g ? L non-STP Looking for liters: Start with stoich and calculate moles of CO2. 5.25 g CaCO3 1 mol CaCO3 100.09g 1 mol CO2 CaCO3 = 1.26 mol CO2 Plug this into the Ideal Gas Law to find liters.

Gas Stoichiometry Problem What volume of CO2 forms from 5.25 g of CaCO3 at 103 kPa & 25ºC? GIVEN: P = 103 kPa V = ? n = 1.26 mol T = 25°C = 298 K R = 8.315 dm3kPa/molK WORK: PV = nRT (103 kPa)V =(1mol)(8.315dm3kPa/molK)(298K) V = 1.26 dm3 CO2 C. Johannesson

Gas Stoichiometry Problem How many grams of Al2O3 are formed from 15.0 L of O2 at 97.3 kPa & 21°C? 4 Al + 3 O2  2 Al2O3 15.0 L non-STP ? g GIVEN: P = 97.3 kPa V = 15.0 L n = ? T = 21°C = 294 K R = 8.315 dm3kPa/molK WORK: PV = nRT (97.3 kPa) (15.0 L) = n (8.315dm3kPa/molK) (294K) n = 0.597 mol O2 Given liters: Start with Ideal Gas Law and calculate moles of O2. NEXT  C. Johannesson

Gas Stoichiometry Problem How many grams of Al2O3 are formed from 15.0 L of O2 at 97.3 kPa & 21°C? 4 Al + 3 O2  2 Al2O3 15.0L non-STP ? g Use stoich to convert moles of O2 to grams Al2O3. 0.597 mol O2 2 mol Al2O3 3 mol O2 101.96 g Al2O3 1 mol Al2O3 = 40.6 g Al2O3