Cuts, Trees, and Electrical Flows Aleksander Mądry.

Slides:



Advertisements
Similar presentations
Greening Backbone Networks Shutting Off Cables in Bundled Links Will Fisher, Martin Suchara, and Jennifer Rexford Princeton University.
Advertisements

Alexander Kononov Sobolev Institute of Mathematics Siberian Branch of Russian Academy of Science Novosibirsk, Russia.
Analysis of Algorithms
Network Design with Degree Constraints Guy Kortsarz Joint work with Rohit Khandekar and Zeev Nutov.
Routing in Undirected Graphs with Constant Congestion Julia Chuzhoy Toyota Technological Institute at Chicago.
Part VI NP-Hardness. Lecture 23 Whats NP? Hard Problems.
Vertex sparsifiers: New results from old techniques (and some open questions) Robert Krauthgamer (Weizmann Institute) Joint work with Matthias Englert,
Shadow Prices vs. Vickrey Prices in Multipath Routing Parthasarathy Ramanujam, Zongpeng Li and Lisa Higham University of Calgary Presented by Ajay Gopinathan.
Primal Dual Combinatorial Algorithms Qihui Zhu May 11, 2009.
Submodular Set Function Maximization A Mini-Survey Chandra Chekuri Univ. of Illinois, Urbana-Champaign.
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
Submodular Set Function Maximization via the Multilinear Relaxation & Dependent Rounding Chandra Chekuri Univ. of Illinois, Urbana-Champaign.
Prize-collecting Frameworks Mohammad T. HajiAghayi University of Maryland, College Park & AT&T Labs-- Research TexPoint fonts used in EMF. Read the TexPoint.
Fast Regression Algorithms Using Spectral Graph Theory Richard Peng.
From Approximative Kernelization to High Fidelity Reductions joint with Michael Fellows Ariel Kulik Frances Rosamond Technion Charles Darwin Univ. Hadas.
Bart Jansen 1.  Problem definition  Instance: Connected graph G, positive integer k  Question: Is there a spanning tree for G with at least k leaves?
Approximability & Sums of Squares Ryan O’Donnell Carnegie Mellon.
Satyen Kale (Yahoo! Research) Joint work with Sanjeev Arora (Princeton)
IMIM v v v v v v v v v DEFINITION L v 11 v 2 1 v 31 v 12 v 2 2 v 32.
Graph Partitioning Problems Lecture 18: March 14 s1 s3 s4 s2 T1 T4 T2 T3 s1 s4 s2 s3 t3 t1 t2 t4 A region R1 R2 C1 C2.
Poly-Logarithmic Approximation for EDP with Congestion 2
Lecture 24 Coping with NPC and Unsolvable problems. When a problem is unsolvable, that's generally very bad news: it means there is no general algorithm.
All-or-Nothing Multicommodity Flow Chandra Chekuri Sanjeev Khanna Bruce Shepherd Bell Labs U. Penn Bell Labs.
1 NP-Complete Problems. 2 We discuss some hard problems:  how hard? (computational complexity)  what makes them hard?  any solutions? Definitions 
Online Social Networks and Media. Graph partitioning The general problem – Input: a graph G=(V,E) edge (u,v) denotes similarity between u and v weighted.
S. J. Shyu Chap. 1 Introduction 1 The Design and Analysis of Algorithms Chapter 1 Introduction S. J. Shyu.
Hierarchical Decompositions for Congestion Minimization in Networks Harald Räcke 1.
All Rights Reserved © Alcatel-Lucent 2006, ##### Matthew Andrews, Alcatel-Lucent Bell Labs Princeton Approximation Workshop June 15, 2011 Edge-Disjoint.
Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey U. Waterloo Department of Combinatorics and Optimization Joint work with Isaac.
Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey University of Waterloo Department of Combinatorics and Optimization Joint.
Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey U. Waterloo C&O Joint work with Isaac Fung TexPoint fonts used in EMF. Read.
Balanced Graph Partitioning Konstantin Andreev Harald Räcke.
Randomness in Computation and Communication Part 1: Randomized algorithms Lap Chi Lau CSE CUHK.
Hardness Results for Problems
June 10, 2003STOC 2003 Optimal Oblivious Routing in Polynomial Time Harald Räcke Paderborn Edith Cohen AT&T Labs-Research Yossi Azar Amos Fiat Haim Kaplan.
All Rights Reserved © Alcatel-Lucent 2006, ##### Matthew Andrews Show-and-Tell April 20, 2010 Edge Disjoint Paths via Räcke Decompositions.
Graph Sparsifiers Nick Harvey University of British Columbia Based on joint work with Isaac Fung, and independent work of Ramesh Hariharan & Debmalya Panigrahi.
The Best Algorithms are Randomized Algorithms N. Harvey C&O Dept TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAAA.
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Algorithms  Al-Khwarizmi, arab mathematician, 8 th century  Wrote a book: al-kitab… from which the word Algebra comes  Oldest algorithm: Euclidian algorithm.
Graph Sparsifiers Nick Harvey Joint work with Isaac Fung TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
CS 345: Chapter 10 Parallelism, Concurrency, and Alternative Models Or, Getting Lots of Stuff Done at Once.
CSE 326: Data Structures NP Completeness Ben Lerner Summer 2007.
The minimum cost flow problem. Simplifying assumptions Network is connected (as an undirected graph). – We can consider each connected component separately.
Princeton University COS 423 Theory of Algorithms Spring 2001 Kevin Wayne Approximation Algorithms These lecture slides are adapted from CLRS.
Spanning and Sparsifying Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization WorkshopSpanning and Sparsifying1.
CSE 589 Part VI. Reading Skiena, Sections 5.5 and 6.8 CLR, chapter 37.
NP-COMPLETE PROBLEMS. Admin  Two more assignments…  No office hours on tomorrow.
CS 484 Load Balancing. Goal: All processors working all the time Efficiency of 1 Distribute the load (work) to meet the goal Two types of load balancing.
New algorithms for Disjoint Paths and Routing Problems
Sporadic model building for efficiency enhancement of the hierarchical BOA Genetic Programming and Evolvable Machines (2008) 9: Martin Pelikan, Kumara.
Lecture. Today Problem set 9 out (due next Thursday) Topics: –Complexity Theory –Optimization versus Decision Problems –P and NP –Efficient Verification.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Sketching complexity of graph cuts Alexandr Andoni joint work with: Robi Krauthgamer, David Woodruff.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
TU/e Algorithms (2IL15) – Lecture 11 1 Approximation Algorithms.
Data Driven Resource Allocation for Distributed Learning
Optimization problems such as
Efficient methods for finding low-stretch spanning trees
Minimum Spanning Tree 8/7/2018 4:26 AM
Maximum Matching in the Online Batch-Arrival Model
A Polynomial-time Tree Decomposition for Minimizing Congestion
Algorithms for Routing Node-Disjoint Paths in Grids
Approximating k-route cuts
Randomized Algorithms CS648
Haim Kaplan and Uri Zwick
Graph Partitioning Problems
Great Ideas: Algorithm Implementation
On the effect of randomness on planted 3-coloring models
Chapter 1. Formulations.
Presentation transcript:

Cuts, Trees, and Electrical Flows Aleksander Mądry

Graphs are everywhere! (In case you just got here by mistake…) They got HUGE

(Could allow directed edges, but will focus on undirected today) Algorithmic Graph Theory: Developing algorithmic ideas and tools to allow us to analyze and understand graphs

Example Tasks of Interest Graph Partitioning (clustering, community detection, div & conq) Connectivity Analysis (congestion estimation, analyzing resiliance to link failures) Network Design (supporting most efficent commun. infrastructure, routing schemes)

(Could allow directed edges, but will focus on undirected today) Algorithmic Graph Theory: Developing algorithmic ideas and tools to allow us to analyze and understand graphs Big Data = Big Problem We need our algorithms to be really fast (theory paradise: asymptotic complexity does matter here, O(n 2 ) or even O(n 3/2 ) does not cut it) Also, parallelization/distributed aspects play role Classic approaches that we used so far are often too slow and hard to parallelize/decentralize

Fundamental question: What graph problems can we solve in nearly-linear time?

Undirected graph G with integer capacities u() The setup We want to solve minimization cut-based problems on G

Cut-based min problem C u(C) = capacity of the cut C f(C) = arbitrary positive function independent of edges/capacities f(C) = 1 minimum cut problem f(C) = 1 if C separates s and t; f(C)= otherwise minimum s-t cut problem f(C) = 1/min {|C|, |V\C|} sparsest cut problem Examples:

generalized sparsest cut problem minimum conductance cut problem balanced separator problem minimum bisection problem minimum multi-cut problem minimum multiway-cut problem … Other important examples: Can we solve these problems in poly time? Yes, in case of minimum (s-t) cut, but the remaining ones are NP-hard Good news: Can get a O(log n) (or better) approx.!

What about nearly-linear time computations? Bad news: Known alg. for min s-t cut need Ω(n 3/2 ) time Same is true for (almost) all the best approx. algorithms for the other problems How about trading approx. for efficiency? (We already did this to cope with NP-hardness) Good news: Possible for minimum cut problem! [Karger 00] Lots of progress in the context of sparsest cut and minimum conductance cut [Arora Hazan Kale 04 Khandekar Rao Vazirani 06 Arora Kale 07 Orecchia Schulman Vazirani Vishnoi 08 Sherman 09 Spielman Teng 04 Andersen Chung Lang 06 Andersen Peres 09 Orecchia Vishnoi 11 Orecchia Sachdeva Vishnoi 12]

Still-unanswered question: Can we design nearly-linear time approx. algorithms for all these problems? [M. 10]: Yes, if we can compute such a fast approx. on trees More precisely: Fix any cut-based minimization problem Good and fast β-approx. alg. working only on trees A O(β polylog)-approx. for general graphs that runs in Õ(n 1+δ ) time (The poly-log grows mildly with 1/δ) Moral: When shooting for a fast polylog-approx. algorithm for a cut-based minimization problem, just focus on trees

G C C C λ1λ1 λiλi (T i,λ i ) (T 1,λ 1 ) How to prove such a theorem? such that for any cut C: (cut lower-bounding) u i (C) u(C) for all i (cut upper-bounding) E λ [u(C)]:= i λ i u i (C) O(log n) u(C) [Räcke 08] (simplified): For any graph G=(V,E,u), we can find a convex combination {(λ i,T i )} i of trees*

How to use this decomposition? Idea for lifting: 1) Find {(λ i,T i )} i as described 2) Sample a tree T being T i with prob. λ i 3) Output a β-optimal solution C for instance P on T β u T (C*)f P (C*) O(β log n) u(C*) f P (C*)=O(β log n) OPT Why should it work? With prob. 1/2: u T (C*) O(log n) u(C*) Let C* be the optimal solution But u(C) f P (C) u T (C) f P (C) Note: Choice of T is oblivious to the problem we want to solve

Lifting works great! How about running time? Räckes algorithm runs in Õ(n 3 ) time Prohibitive from our point of view! What to do now? Idea: Decompose G into objects that are more complicated than trees, but still simpler than general graphs H is a j-tree if it is a union of: a forest F (envelope) an arbitrary graph R (core) and: 1) |V(R)| j 2) for each connected component F of F, |V(F) V(R)|=1 Note: 1-tree is just a tree H R F

Decomposing graphs into j-trees The real benefit comes from the ability to vary j! Theorem (simplified): For any graph G=(V,E,u) and j1, we can find in Õ(m+n 2 /j) time a convex comb. {(λ i,T i )} i of j-trees s.t. for any cut C: (cut lower-bounding) u i (C) u(C) for all i (cut upper-bounding) E λ [u(C)]:= i λ i u i (C) Õ(log n) u(C) j=1 yields Räckes result with faster running time but has slightly worse quality

G Speeding up min s-t cut computation: Õ(m+n 2 /j) time + sampling C* T R With prob. 1/2, cut C* is Õ(log n)-preserved If we run the min s-t cut alg. on T instead of G then appropriate choice of j gives a speed up! (i.e. if j is such that we minimize the total running time: Õ(m+n 2 /j) + Õ(m+j (1+c) ) << Õ(m+n 1+c )) s t s t

G Õ(m+n 2 /j) time + sampling C* T R s t s t We get a running time arbitrarily close to nearly-linear There is even better way of leveraging this flexibility! …we do it in a series of small recursive steps …but at a price of approx. ratio growing accordingly Instead of reducing G to T in one big step…

Success? We get a good generic baseline solution for a large family of problems But… The approx. ratio could be better Algorithms seem not really practical yet (Can we use some of the insight to speed up the existing heuristics?) Still… The approx ratio should be improvable Was recently used to get (1+ε)-approx. to undirected max flow in close-to-linear time [Kelner Lee Orecchia Sidford 13] [Sherman 13]

Spectral Graph Theory Beyond λ 2

= L Spectral graph theory: Connecting combinatorial structure of G to linear-algebraic properties of L The Laplacian matrix of a graph G AD- D = diagonal vertex degree matrix A = adjacency matrix Key quantity: λ 2 = second-smallest eigenvalue of L

Classic success story: λ 2 connection Lots of connections to spectral properties of the graph (e.g., understanding of random walks) Spectral (and local) partitioning: Works great on well-connected graphs (i.e., graphs with large λ 2 ) But has well-known limitations Can we take spectral graph theory beyond λ 2 ?

Promising example: O(k 2 λ 2 (λ k ) -1/2 )-approx. to uniform sparsest cut [Kwok Lau Lee Oveis-Gharan Trevisan 13] (If λ k fairly large for some small k a very good approx.) Upshot: λ k fairly large G = union of k-1 expander-like graphs Still: Can we access the whole spectrum of L in more principled manner?

Given a graph G with resistances {r e } e source s and sink t s t resistances given by {r e } e Recipe for elec. flow: 1) Treat edges as resistors 2) Connect a battery to s and t Object of interest: Electrical flows

Given a graph G with resistances {r e } e source s and sink t s t Recipe for elec. flow: 1) Treat edges as resistors 2) Connect a battery to s and t induced current (flow conservation constraints hold) Object of interest: Electrical flows

Computing an electrical flow = solving a Laplacian linear system = L x b What does it have to do with Laplacians? Furthermore: [Spielman Teng 04, Koutis Miller Peng 10 11] We can (essentially) solve such systems in nearly-linear time Result: Electrical flow is a nearly-linear time primitive

Fast maximum/multi-commodity flow approximation [Christano Kelner M. Spielman Teng 11] [Kelner Miller Peng 12] How can we employ this primitive? Faster random walk simulations [Kelner M. 09] Where else will electrical flow be a useful primitive?

Conclusion Power of tree-like decompositions: Approx. vs. running time trade-off for undirected cut-based minimization problems Outstanding challenge: Directed graphs Spectral graph theory beyond λ 2 : Electrical flows primitive

Thank you Questions?