Concept 7.4: Active transport uses energy to move solutes against their gradients Facilitated diffusion is still passive because the solute moves down.

Slides:



Advertisements
Similar presentations
© 2011 Pearson Education, Inc. LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman,
Advertisements

CELL TRANSPORTATION Cell membranes are selectively permeable, controlling the entrance and exit of all nutrients, wastes and other molecules in order to.
Diploma In Microbiology MIC102 CHAPTER 2 Movement In And Out Of Cell Lecturer: Pn Aslizah Binti Mohd Aris /
Chapter 5 Active Transport.
NOTES: CH 7 part 2 - Transport Across the Cell Membrane ( )
Membrane Structure and Function
Overview: Life at the Edge The plasma membrane is the boundary that separates the living cell from its surroundings The plasma membrane exhibits selective.
Chapter 7: The Cell Membrane. Overview: Life at the Edge Plasma membrane- the boundary that separates the living cell from its surroundings The plasma.
Membrane Structure and Function. Overview: Life at the Edge Plasma membrane -boundary that separates the living cell from its surroundings selective permeability,
Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
ENDURING UNDERSTANDING 2.B GROWTH, REPRODUCTION AND DYNAMIC HOMEOSTASIS REQUIRE THAT CELLS CREATE AND MAINTAIN INTERNAL ENVIRONMENTS THAT ARE DIFFERENT.
Moving materials in and out of the cell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Overview: Lab Cell membrane The plasma membrane is the boundary that separates the living cell from its surroundings The plasma membrane exhibits selective.
Facilitated Diffusion and Active Transport
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
CELL BIOLOGY - Overview: A. Membranes - how stuff get in/out of cells 1. Structure 2. Functions.
Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins Phospholipids are the most abundant lipid in the plasma membrane Phospholipids.
Membrane Structure and Function Chapter 7.  The plasma membrane  Is the boundary that separates the living cell from its nonliving surroundings.
In a hypertonic environment, plant cells lose water; eventually, the membrane pulls away from the wall, a usually lethal effect called plasmolysis Video:
Wed 10/2 AP Lab: Diffusion & Osmosis
Membrane Structure and Function
Active and Passive Transport
Membrane Structure and Function
Fig. 7-1 Figure 7.1 How do cell membrane proteins help regulate chemical traffic?
Membrane Structure and Function
Membrane Structure and Function
Chapter 7: Membrane Structure and Function
Membrane Structure and Function
Passive and Active Transport
Membrane Permeability
Membrane Structure and Function
MEMBRANE STUCTURE AND FUNCTION How things get into and out of the cell
THE CELL MEMBRANE AND ITS FUNCTION
Membrane Structure and Function
MEMBRANE STRUCTURE AND FUNCTION OVERVIEW
Overview: Life at the Edge
Membrane Structure and Function
Membrane Structure and Function
Membrane Structure and Function
Membrane Structure and Function
Membrane Structure, Synthesis, and Transport
Types of Cellular Transport
Facilitated Diffusion and Active Transport
Membrane Structure and Function
Membrane Structure and Function
(a) A channel protein Channel protein Solute Carrier protein Solute
CELL MEMBRANE FUNCTION
Concept 7.4: Active transport uses energy to move solutes against their gradients Facilitated diffusion is still passive because the solute moves down.
The Cell Membrane.
Membrane Structure and Function
Membrane Structure and Function
Membrane Structure and Function
Membrane Structure and Function
Membrane Structure and Function
5. Specific proteins facilitate passive transport of water and selected solutes: a closer look Many polar molecules and ions that are normally impeded.
Membrane Structure and Function
Membrane Structure and Function
Membrane Structure and Function
Active transport is the pumping ضَخ of solutes against their concentration gradients الإنحدار التركيزي Some facilitated transport proteins can move solutes.
MEMBRANE STUCTURE AND FUNCTION How things get into and out of the cell
Membrane Structure and Function
Membrane Structure and Function
Membrane Structure and Function
General Animal Biology
General Animal Biology
Presentation transcript:

Concept 7.4: Active transport uses energy to move solutes against their gradients Facilitated diffusion is still passive because the solute moves down its concentration gradient Some transport proteins, however, can move solutes against their concentration gradients Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Need for Energy in Active Transport Active transport moves substances against their concentration gradient Active transport requires energy, usually in the form of ATP Active transport is performed by specific proteins embedded in the membranes Animation: Active Transport Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The sodium-potassium pump is one type of active transport system Active transport allows cells to maintain concentration gradients that differ from their surroundings The sodium-potassium pump is one type of active transport system For the Cell Biology Video Na+/K+ATPase Cycle, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

1 2 3 6 5 4 EXTRACELLULAR FLUID [Na+] high Na+ [K+] low Na+ Na+ Na+ Fig. 7-16-7 EXTRACELLULAR FLUID [Na+] high Na+ [K+] low Na+ Na+ Na+ Na+ Na+ Na+ Na+ [Na+] low ATP P Na+ P CYTOPLASM [K+] high ADP 1 2 3 K+ Figure 7.16, 1–6 The sodium-potassium pump: a specific case of active transport K+ K+ K+ K+ P K+ P 6 5 4

Facilitated diffusion Fig. 7-17 Passive transport Active transport ATP Diffusion Facilitated diffusion Figure 7.17 Review: passive and active transport

How Ion Pumps Maintain Membrane Potential Membrane potential is the voltage difference across a membrane Voltage is created by differences in the distribution of positive and negative ions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Two combined forces, collectively called the electrochemical gradient, drive the diffusion of ions across a membrane: A chemical force (the ion’s concentration gradient) An electrical force (the effect of the membrane potential on the ion’s movement) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

An electrogenic pump is a transport protein that generates voltage across a membrane The sodium-potassium pump is the major electrogenic pump of animal cells The main electrogenic pump of plants, fungi, and bacteria is a proton pump Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

– EXTRACELLULAR FLUID + ATP – + H+ H+ Proton pump H+ – + H+ H+ H+ – + Fig. 7-18 – EXTRACELLULAR FLUID + ATP – + H+ H+ Proton pump H+ – + H+ H+ H+ Figure 7.18 An electrogenic pump – + CYTOPLASM H+ – +

Cotransport: Coupled Transport by a Membrane Protein Cotransport occurs when active transport of a solute indirectly drives transport of another solute Plants commonly use the gradient of hydrogen ions generated by proton pumps to drive active transport of nutrients into the cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

– + H+ ATP H+ – + H+ H+ – + H+ H+ – + H+ H+ – + – + Diffusion of H+ Fig. 7-19 – + H+ ATP H+ – + Proton pump H+ H+ – + H+ H+ – + H+ Diffusion of H+ Sucrose-H+ cotransporter Figure 7.19 Cotransport: active transport driven by a concentration gradient H+ – Sucrose + – + Sucrose

Bulk transport requires energy Concept 7.5: Bulk transport across the plasma membrane occurs by exocytosis and endocytosis Small molecules and water enter or leave the cell through the lipid bilayer or by transport proteins Large molecules, such as polysaccharides and proteins, cross the membrane in bulk via vesicles Bulk transport requires energy Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Animation: Exocytosis In exocytosis, transport vesicles migrate to the membrane, fuse with it, and release their contents Many secretory cells use exocytosis to export their products Animation: Exocytosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Animation: Exocytosis and Endocytosis Introduction In endocytosis, the cell takes in macromolecules by forming vesicles from the plasma membrane Endocytosis is a reversal of exocytosis, involving different proteins There are three types of endocytosis: Phagocytosis (“cellular eating”) Pinocytosis (“cellular drinking”) Receptor-mediated endocytosis Animation: Exocytosis and Endocytosis Introduction Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Animation: Phagocytosis In phagocytosis a cell engulfs a particle in a vacuole The vacuole fuses with a lysosome to digest the particle For the Cell Biology Video Phagocytosis in Action, go to Animation and Video Files. Animation: Phagocytosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 7-20 Figure 7.20 Endocytosis in animal cells PHAGOCYTOSIS EXTRACELLULAR FLUID CYTOPLASM 1 µm Pseudopodium Pseudopodium of amoeba “Food”or other particle Bacterium Food vacuole Food vacuole An amoeba engulfing a bacterium via phagocytosis (TEM) PINOCYTOSIS 0.5 µm Plasma membrane Pinocytosis vesicles forming (arrows) in a cell lining a small blood vessel (TEM) Vesicle RECEPTOR-MEDIATED ENDOCYTOSIS Coat protein Receptor Coated vesicle Figure 7.20 Endocytosis in animal cells Coated pit Ligand A coated pit and a coated vesicle formed during receptor- mediated endocytosis (TEMs) Coat protein Plasma membrane 0.25 µm

PHAGOCYTOSIS CYTOPLASM 1 µm EXTRACELLULAR FLUID Pseudopodium Fig. 7-20a PHAGOCYTOSIS EXTRACELLULAR FLUID CYTOPLASM 1 µm Pseudopodium Pseudopodium of amoeba “Food” or other particle Bacterium Food vacuole Figure 7.20 Endocytosis in animal cells—phagocytosis Food vacuole An amoeba engulfing a bacterium via phagocytosis (TEM)

Animation: Pinocytosis In pinocytosis, molecules are taken up when extracellular fluid is “gulped” into tiny vesicles Animation: Pinocytosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

PINOCYTOSIS Plasma membrane Vesicle 0.5 µm Fig. 7-20b Pinocytosis vesicles forming (arrows) in a cell lining a small blood vessel (TEM) Vesicle Figure 7.20 Endocytosis in animal cells—pinocytosis

Animation: Receptor-Mediated Endocytosis In receptor-mediated endocytosis, binding of ligands to receptors triggers vesicle formation A ligand is any molecule that binds specifically to a receptor site of another molecule Animation: Receptor-Mediated Endocytosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Coat protein Receptor Coated vesicle Coated pit Ligand A coated pit Fig. 7-20c RECEPTOR-MEDIATED ENDOCYTOSIS Coat protein Receptor Coated vesicle Coated pit Ligand A coated pit and a coated vesicle formed during receptor- mediated endocytosis (TEMs) Coat protein Figure 7.20 Endocytosis in animal cells—receptor-mediated endocytosis Plasma membrane 0.25 µm

Facilitated diffusion Fig. 7-UN1 Passive transport: Facilitated diffusion Channel protein Carrier protein

Fig. 7-UN2 Active transport: ATP

Environment: 0.01 M sucrose “Cell” 0.01 M glucose 0.01 M fructose Fig. 7-UN3 Environment: 0.01 M sucrose 0.01 M glucose 0.01 M fructose “Cell” 0.03 M sucrose 0.02 M glucose

Fig. 7-UN4

You should now be able to: Define the following terms: amphipathic molecules, aquaporins, diffusion Explain how membrane fluidity is influenced by temperature and membrane composition Distinguish between the following pairs or sets of terms: peripheral and integral membrane proteins; channel and carrier proteins; osmosis, facilitated diffusion, and active transport; hypertonic, hypotonic, and isotonic solutions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Explain how transport proteins facilitate diffusion Explain how an electrogenic pump creates voltage across a membrane, and name two electrogenic pumps Explain how large molecules are transported across a cell membrane Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings