Imperfections in Solid Materials

Slides:



Advertisements
Similar presentations
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Advertisements

Chapter 5 Defects in solids
Crystal Lattice Imperfections
Chapter 5: Imperfections in Solids
CHAPTER 4: IMPERFECTIONS IN SOLIDS
A (0001) plane for an HCP unit cell is show below.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Imperfections in Solid Materials R. Lindeke ENGR 2110.
1. Chapter 4: Imperfections in Solids 2 Introduction Metals Alloys Solid solutions New/second phase Solute (guest) Solvent (host)
CHAPTER 4: IMPERFECTIONS IN SOLIDS
IMPERFECTIONS IN SOLIDS Week Solidification - result of casting of molten material –2 steps Nuclei form Nuclei grow to form crystals – grain structure.
The Muppet’s Guide to: The Structure and Dynamics of Solids 6. Crystal Growth & Defects.
The Muppet’s Guide to: The Structure and Dynamics of Solids 6. Crystal Growth & Defects.
ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material.
MSE 528 Crystal structures and Defects Fall 2010.
Dislocations – Linear Defects –Two-dimensional or line defect –Line around which atoms are misaligned – related to slip Edge dislocation: –extra half-plane.
Crystalline Arrangement of atoms. Chapter 4 IMPERFECTIONS IN SOLIDS The atomic arrangements in a crystalline lattice is almost always not perfect. The.
Dislocations and Strengthening
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
CHE 333 Class 12 Defects in Crystals.. Perfect Structure Perfect Structure for FCC, BCC and HCP crystals – all atom sites filled with an atom. Reality.
Why are we interested IMPERFECTIONS IN SOLIDS ?
Materials Engineering – Day 5
Solidification & Crystalline Imperfections
Why are we interested IMPERFECTIONS IN SOLIDS ?
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Types of Materials Metals : –Strong, ductile –high thermal & electrical conductivity –opaque Polymers/plastics : Covalent bonding  sharing of e’s –Soft,
CHAPTER 5: IMPERFECTIONS IN SOLIDS
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 4-15 Grain boundaries: are boundaries between crystals. are produced by the solidification process, for example. have a change in crystal orientation.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic sites. POINT DEFECTS CHAPTER 4: IMPERFECTIONS.
IMPERFECTIONS IN SOLIDS
STRUCTURAL IMPERFECTIONS (DEFECTS) IN CRYSTALLINE SOLIDS
CHAPTER 3: INELASTIC DEFORMATION. 6 Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic.
The Muppet’s Guide to: The Structure and Dynamics of Solids 7. Defects and Solutions.
The Structure and Dynamics of Solids
Interactions of Quasiparticles
A (0001) plane for an HCP unit cell is show below.
Imperfections in Solids
Theoretical Strength Point Defects Linear Defects Planar Defects Volume Defects Microscopy Please read Chapter 4Please read Chapter 4 ME 330 Engineering.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Plastic deformation Extension of solid under stress becomes
Material science & Metallurgy L D College of Engineering Mechanical Engineering 1.
1 Length Scale of Imperfections Vacancies, impurities dislocations Grain and twin boundaries Voids Inclusions precipitates point, line, planar, and volumetric.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 6: Imperfections in Solids
Chapter 5: Imperfections in Solids
Crystal Lattice Imperfections
METALS Recap: metallic bonds, metal properties Summary
Play movie  LINE DEFECTS Dislocations: • are line defects,
Dislocations and Strengthening
CHAPTER 4: IMPERFECTIONS IN SOLIDS
CHAPTER 4: IMPERFECTIONS IN SOLIDS
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Structure and manufacturing Properties of Metals
Chapter 3:week 8 Solid State Chemistry Imperfections in Solid Materials Band theory, insulators, semi conductors p-type and n-type semiconductors and.
Dislocations Dislocations Dislocations
Chapter 6: Imperfections in Solids
IMPERFECTIONS IN SOLIDS
Description & importance
TOPIC 2: SOLIDIFICATIONS, IMPERFECTIONS IN SOLIDS & DIFFUSIONS
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Fundamental concepts of metals science
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
CRYSTAL IMPERFECTIONS
Imperfections in Solids
Presentation transcript:

Imperfections in Solid Materials Band theory, insulators, semiconductors p-and n- type, superconductors

“Crystals are like people, it is the defects in them which tend to make them interesting!” - Colin Humphreys.

In real materials we find: Crystalline Defects or lattice irregularity Most real materials have one or more “errors in perfection” with dimensions on the order of an atomic diameter to many lattice sites Defects can be classification: 1. according to geometry (point, line or plane) 2. dimensions of the defect

Imperfections in Solids Solidification- result of casting of molten material 2 steps Nuclei form Nuclei grow to form crystals – grain structure Start with a molten material – all liquid nuclei crystals growing grain structure liquid Adapted from Fig.4.14 (b), Callister 7e. Crystals grow until they meet each other

Point Defects Vacancy self- interstitial • Vacancies: -vacant atomic sites in a structure. Vacancy distortion of planes • Self-Interstitials: -"extra" atoms positioned between atomic sites. self- interstitial distortion of planes

Point Defects in Alloys Two outcomes if impurity (B) added to host (A): • Solid solution of B in A (i.e., random dist. of point defects) OR Substitutional solid soln. (e.g., Cu in Ni) Interstitial solid soln. (e.g., C in Fe) • Solid solution of B in A plus particles of a new phase (usually for a larger amount of B) Second phase particle --different composition --often different structure.

Line Defects Are called Dislocations: Schematic of Zinc (HCP): And: • slip between crystal planes result when dislocations move, • this motion produces permanent (plastic) deformation. Schematic of Zinc (HCP): • before deformation • after tensile elongation slip steps which are the physical evidence of large numbers of dislocations slipping along the close packed plane {0001} Adapted from Fig. 7.8, Callister 7e.

Edge Dislocation Edge Dislocation Fig. 4.3, Callister 7e.

Motion of Edge Dislocation • Dislocation motion requires the successive bumping of a half plane of atoms (from left to right here). • Bonds across the slipping planes are broken and remade in succession. Atomic view of edge dislocation motion from left to right as a crystal is sheared. (Courtesy P.M. Anderson)

Screw Dislocations b Dislocation line (b) Burgers vector b (a) Adapted from Fig. 4.4, Callister 7e.

Edge, Screw, and Mixed Dislocations Adapted from Fig. 4.5, Callister 7e.

Imperfections in Solids Dislocations are visible in (T) electron micrographs Adapted from Fig. 4.6, Callister 7e.

MICROSCOPIC EXAMINATION Applications To Examine the structural elements and defects that influence the properties of materials. Ensure that the associations between the properties and structure (and defects) are properly understood. Predict the properties of materials once these relationships have been established. Structural elements exist in ‘macroscopic’ and ‘microscopic’ dimensions

Optical Microscopy • Useful up to 2000X magnification (?). • Polishing removes surface features (e.g., scratches) • Etching changes reflectance, depending on crystal orientation since different Xtal planes have different reactivity. 0.75mm crystallographic planes Adapted from Fig. 4.13(b) and (c), Callister 7e. (Fig. 4.13(c) is courtesy of J.E. Burke, General Electric Co. Micrograph of brass (a Cu-Zn alloy)

Band Theory of Solids A useful way to visualize the difference between conductors,insulators and semiconductors is to plot the available energies for electrons in the materials.

Electrical Conductivity in Diamond sp3 hybridization localized s orbitals insulator

Conductor, Semiconductor, and Insulator

Doped Semiconductors n-type p-type

Chemistry In Action: High-Temperature Superconductors

Crystal structure determination

C6H6O3S