Reciprocal role of GATA-1 and vitamin D receptor in human myeloid dendritic cell differentiation by Florian Göbel, Sabine Taschner, Jennifer Jurkin, Sabine.

Slides:



Advertisements
Similar presentations
Retrovirally Transduced CD34++ Human Cord Blood Cells Generate T Cells Expressing High Levels of the Retroviral Encoded Green Fluorescent Protein Marker.
Advertisements

Molecular Therapy - Nucleic Acids
Volume 39, Issue 5, Pages (November 2013)
by Theresa Tretter, Ram K. C
by Ayten Kandilci, and Gerard C. Grosveld
Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33 by Tatjana Pecaric-Petkovic, Svetlana A. Didichenko,
Involvement of suppressors of cytokine signaling in toll-like receptor–mediated block of dendritic cell differentiation by Holger Bartz, Nicole M. Avalos,
Identification of key regulatory pathways of myeloid differentiation using an mESC-based karyotypically normal cell model by Dong Li, Hong Yang, Hong Nan,
Constitutively Active β-Catenin Confers Multilineage Differentiation Potential on Lymphoid and Myeloid Progenitors  Yoshihiro Baba, Karla P. Garrett,
Notch signaling induces cytoplasmic CD3ϵ expression in human differentiating NK cells by Magda De Smedt, Tom Taghon, Inge Van de Walle, Greet De Smet,
Retroviral-Mediated Gene Transduction of c-kit Into Single Hematopoietic Progenitor Cells From Cord Blood Enhances Erythroid Colony Formation and Decreases.
Human C/EBP-ϵ activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation by Richa Bedi, Jian Du, Arun K.
Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation 
Dendritic cell differentiation potential of mouse monocytes: monocytes represent immediate precursors of CD8- and CD8+ splenic dendritic cells by Beatriz.
CD44 ligation on peripheral blood polymorphonuclear cells induces interleukin-6 production by Giuseppe Sconocchia, Laura Campagnano, Domenico Adorno, Angela.
by Shawn W. Cochrane, Ying Zhao, Robert S. Welner, and Xiao-Hong Sun
Differential requirement for DOCK2 in migration of plasmacytoid dendritic cells versus myeloid dendritic cells by Kazuhito Gotoh, Yoshihiko Tanaka, Akihiko.
Transcription factor GATA-1 potently represses the expression of the HIV-1 coreceptor CCR5 in human T cells and dendritic cells by Mark S. Sundrud, Scott.
The TCL1 oncoprotein inhibits activation-induced cell death by impairing PKCθ and ERK pathways by Gilles Despouy, Marjorie Joiner, Emilie Le Toriellec,
Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway by Kevin M. Elias, Arian Laurence,
MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+precursors by Allan J. Masterson, Claudia C. Sombroek,
Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis by Aleksandra Rizo, Sandra Olthof, Lina Han, Edo.
by Silke Huber, Reinhard Hoffmann, Femke Muskens, and David Voehringer
Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment by.
by Alexander Kiani, Francisco J
Novel function for interleukin-7 in dendritic cell development
ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells by Tomohiko Tamura, Hee Jeong Kong, Chainarong Tunyaplin,
Gianni Gerlini, Hans Peter Hefti, Martin Kleinhans, Brian J
CD300a is expressed on human B cells, modulates BCR-mediated signaling, and its expression is down-regulated in HIV infection by Rodolfo Silva, Susan Moir,
Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients by Devi.
by Wu-Guo Deng, Ying Zhu, and Kenneth K. Wu
Cooperative signaling between cytokine receptors and the glucocorticoid receptor in the expansion of erythroid progenitors: molecular analysis by expression.
Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction by Francesca.
by Mo A. Dao, and Jan A. Nolta
The formin DIAPH1 (mDia1) regulates megakaryocyte proplatelet formation by remodeling the actin and microtubule cytoskeletons by Jiajia Pan, Larissa Lordier,
Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release.
Bifurcated Dendritic Cell Differentiation In Vitro From Murine Lineage Phenotype-Negative c-kit + Bone Marrow Hematopoietic Progenitor Cells by Yi Zhang,
Vascular endothelial growth factor stimulates protein kinase CβII expression in chronic lymphocytic leukemia cells by Simon T. Abrams, Benjamin R. B. Brown,
TGF-β combined with M-CSF and IL-4 induces generation of immune inhibitory cord blood dendritic cells capable of enhancing cytokine-induced ex vivo expansion.
by Ulrike Schleicher, Andrea Hesse, and Christian Bogdan
Volume 11, Issue 4, Pages (April 2005)
Lentiviral-mediated RNAi inhibition of Sbds in murine hematopoietic progenitors impairs their hematopoietic potential by Amy S. Rawls, Alyssa D. Gregory,
Volume 39, Issue 5, Pages (November 2013)
Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML)‏ by Michaela Scherr, Anuhar Chaturvedi, Karin.
Identification of TROP2 (TACSTD2), an EpCAM-Like Molecule, as a Specific Marker for TGF-β1-Dependent Human Epidermal Langerhans Cells  Gregor Eisenwort,
Kenichi Miharada, Valgardur Sigurdsson, Stefan Karlsson  Cell Reports 
Volume 28, Issue 6, Pages (June 2008)
Volume 37, Issue 4, Pages (October 2012)
Activated Notch Supports Development of Cytokine Producing NK Cells Which Are Hyporesponsive and Fail to Acquire NK Cell Effector Functions  Veronika.
CD16+ monocytes give rise to CD103+RALDH2+TCF4+ dendritic cells with unique transcriptional and immunological features by Vanessa Sue Wacleche, Amélie.
Volume 39, Issue 6, Pages (December 2013)
Volume 28, Issue 4, Pages (April 2008)
Volume 22, Issue 2, Pages (February 2005)
Volume 9, Issue 5, Pages (November 1998)
Volume 10, Issue 4, Pages (April 2018)
Nighat Yasmin, Sabine Konradi, Gregor Eisenwort, Yvonne M
PPARδ Is a Type 1 IFN Target Gene and Inhibits Apoptosis in T Cells
Opposing Effects of TGF-β and IL-15 Cytokines Control the Number of Short-Lived Effector CD8+ T Cells  Shomyseh Sanjabi, Munir M. Mosaheb, Richard A.
TGFβ Inhibits CD1d Expression on Dendritic Cells
Twist1 regulates embryonic hematopoietic differentiation through binding to Myb and Gata2 promoter regions by Kasem Kulkeaw, Tomoko Inoue, Tadafumi Iino,
Volume 126, Issue 6, Pages (September 2006)
by Rodrigo Abreu, Frederick Quinn, and Pramod K. Giri
Tumor Necrosis Factor-α- and IL-4-Independent Development of Langerhans Cell-Like Dendritic Cells from M-CSF-Conditioned Precursors  Jean-Baptiste Barbaroux,
Volume 35, Issue 4, Pages (October 2011)
Volume 16, Issue 2, Pages (February 2002)
Mattias Svensson, Asher Maroof, Manabu Ato, Paul M. Kaye  Immunity 
PU.1 Expression Delineates Heterogeneity in Primary Th2 Cells
Volume 17, Issue 5, Pages (November 2002)
CD49b+ cells from tumor-bearing mice are more prone to conversion into MDSCs compared with naive CD49b+ cells. CD49b+ cells from tumor-bearing mice are.
Evidence for a cross-talk between human neutrophils and Th17 cells
Presentation transcript:

Reciprocal role of GATA-1 and vitamin D receptor in human myeloid dendritic cell differentiation by Florian Göbel, Sabine Taschner, Jennifer Jurkin, Sabine Konradi, Christine Vaculik, Susanne Richter, Doris Kneidinger, Christina Mühlbacher, Christian Bieglmayer, Adelheid Elbe-Bürger, and Herbert Strobl Blood Volume 114(18):3813-3821 October 29, 2009 ©2009 by American Society of Hematology

GATA-1 represses VDR and is inversely expressed by myeloid DC subsets. GATA-1 represses VDR and is inversely expressed by myeloid DC subsets. (A) Schematic representation of culture models for LC and moDC differentiation used in this study. (B) Quantitative real-time RT-PCR analyses of VDR mRNA expression in GATA-1–transduced monocytic cells. U937Te cells were transduced with a retroviral vector encoding GATA-1-IRES-GFP or empty control vector (CTRL). GFP+ cells were sorted by FACS 48 hours after infection. mRNA was extracted from 105 cells. Cells are analyzed for VDR mRNA levels relative to HPRT mRNA (n = 3; *P < .05). (C) Representative Western blot analysis of VDR and GATA-1 protein levels in DC subsets (n = 3). CD34+-derived moDCs and LCs were generated from CD34+ cord blood cells; moDCs were generated from blood monocytes. (D) Fresh blood monocytes or monocytes during culture (days 2, 3, and 6) in the presence of GM-CSF/IL-4 (moDC cultures) were analyzed by Western blot (top) or by FACS (bottom; day 0, day 3, day 6). Each number in a quadrant represents the percentage of cells in the quadrant. Data are representative of 4 independent donors. Florian Göbel et al. Blood 2009;114:3813-3821 ©2009 by American Society of Hematology

VDR promotes TGF-β1–dependent LC differentiation. VDR promotes TGF-β1–dependent LC differentiation. (A) Human infant foreskin assessed by immunofluorescence staining of cryosections for the expression of CD45 (blue), CD207 (red), and VDR (green). Immunostained sections were analyzed on a Zeiss LSM 510 confocal laser scanning microscope (Carl Zeiss GmbH) using immersion oil as imaging media and a 40×1.3 NA oil immersion objective (Plan-Neofluar; Zeiss). FITC, PE, APC channels were acquired by sequential scanning using 488-, 543-, or 633-nm laser lines for excitation; HFT 488, HFT 488/543, or HFT 514/633 beam-splitters for separation; and BP 505-530 nm, BP 560-615 nm, or LP 650 nm and Photomultiplier (PMT) for detection of the signals. Scale bar, 50 μm. The inset shows an enlarged view of part of the figure. (B) CD34+CD45RA+CD19− umbilical cord blood cells were sorted by FACS and cultivated with the indicated cytokines. Cell numbers of sorted fractions ranged from 7.25 × 104 to 2.3 × 105 (mean, 1.3 × 105; n = 6). Cultures were initiated with 1.2 × 104 to 4.1 × 104 cells (mean, 2.3 × 104; n = 6). FACS diagrams represent day 7–generated cells analyzed for informative marker molecules (± TGF-β1). In the bar diagram, VDR mRNA levels were determined by quantitative real-time RT-PCR at 0, 6 and 24 hours. Values are normalized to HPRT (n = 4). (C) CD34+ cells were transduced with a retroviral vector encoding VDR-IRES-GFP or empty control vector (CTRL) and were then cultured in LC conditions (GM-CSF, SCF, FL, TNFα) in the presence (top panel) or absence (bottom panel) of TGF-β1. Day 7–generated GFP+ cells were analyzed for CD1a versus CD207. Bars represent the mean of percentages (± SEM) CD1a+CD207+ cells observed in 4 independent experiments. (D) CD34+ cells were transduced with a retroviral vector encoding VDR-IRES-GFP or empty control vector (CTRL) and were then cultured in moDC conditions (see Figure 1A). Day 7–generated GFP+ cells were analyzed for CD11b versus CD207. Data are representative of 3 independent experiments. (B-D) Each number in a quadrant represents the percentage of cells in the quadrant. (E) LCs were generated from CD34+ cells in the absence or presence of the VDR antagonist ZK159222 (10−6 M). At day 7 cells were harvested and analyzed for CD207 versus CD1a. Data are representative of 3 independent experiments. Florian Göbel et al. Blood 2009;114:3813-3821 ©2009 by American Society of Hematology

Essential role of GATA-1 downstream of IL-4 during moDC differentiation. Essential role of GATA-1 downstream of IL-4 during moDC differentiation. (A) Peripheral blood monocytes were stimulated with GM-CSF plus IL-4 or GM-CSF alone for 6 days. Fresh monocytes or day 6–generated cells were analyzed for GATA-1 expression by using Western blot analysis. K562 cells are compared. Data are representative of 4 independent donors. (B) Silencing of GATA-1. Western blot of GATA-1 and actin expression of not infected, nonsilencing or GATA-1 shRNA infected K562 cells (top) and moDCs (bottom) at day 7 of differentiation. GFP+ cells were purified before analysis. (C) Monocytes were transduced with a lentiviral vector encoding nonsilencing or GATA-1 shRNA sequences (ie, shGATA-1-GFP or control). A simplified graphical representation of the vector backbone is shown. Infected monocytes were induced by GM-CSF/IL-4 to differentiate to moDCs. Gated GFP+ cells were analyzed by FACS for the indicated markers. FACS blots are representative of 2 independent experiments. Cell cultures were initiated with 106 monocytes, and cell recovery at day 7 was greater than 70%. Florian Göbel et al. Blood 2009;114:3813-3821 ©2009 by American Society of Hematology

Constitutive and inducible GATA-1 expression in LC precursors. Constitutive and inducible GATA-1 expression in LC precursors. (A) IL-4 promotes CD11b+CD1a+ cells at the expense of CD207+CD1a+cells when added at day 5 to LC generation cultures. CD34+ cells were induced to differentiate to LCs. Day 5–generated cells were subcultured in LC cytokines in the absence or presence of IL-4 (25 ng/mL) for 4 days. At day 9 cells were harvested and analyzed for CD207 or CD11b versus CD1a. Data are representative of 3 independent experiments. (B-D) Tet-on-inducible system in primary LC precursors. CD34+ cells were transduced with retroviral vectors encoding Tet-activator-IRES-lyt2, DOX-inducible GATA-1-IRES-NGFR, or empty vector control. Cells were stimulated with LC-promoting cytokines for 5 days. DOX (2 μg/mL) was added from day 5 to day 7. (B) FACS diagrams show day 5–generated cells (left) or day 7–generated NGFR+ cells (right) analyzed for CD207 or CD11b versus CD1a. (C). FACS diagrams represent cells at day 7 analyzed for NGFR expression. (A-C) Each number in a quadrant represents the percentage of cells in the quadrant. (D) Bars represent mean percentages (± SEM; n = 3) of CD1a+CD11b+ cells from control vector or GATA-1–transduced cells at day 5 (total culture) and day 7 (gated NGFR+ cells); *P < .05. (E) LC generation cultures were transduced at day 3 to day 4 with a retroviral vector encoding VDR-IRES-GFP or empty control vector. Forty-eight hours after transduction, GFP+ cells were isolated by using FACS. Equal numbers of GFP+ cells were used for quantitative real-time RT-PCR analysis. Bars represent VDR mRNA levels in 1 representative experiment (cell numbers in PCR experiments: 3 × 104 to 2 × 105; n = 4). Florian Göbel et al. Blood 2009;114:3813-3821 ©2009 by American Society of Hematology

GATA-1 induction mimics VDR-signal inhibition in reestablishing DC development in the presence of 1.25-VD3. GATA-1 induction mimics VDR-signal inhibition in reestablishing DC development in the presence of 1.25-VD3. CD34+ cells were transduced with GATA-1-IRES-GFP, RXRαΔ-IRES-GFP, or empty vector control. Forty-eight hours after transduction, cells were plated in cultures supplemented with LC-promoting cytokines in the presence of 62.5 nmol/L 1.25-VD3 for 7 days. GFPneg, GFPlo, and GFPhi cells were separately gated and were analyzed for CD1a and CD11b expression. Bar diagrams represent mean percentages (± SEM) of CD1a+ CD11b+ cells in gene-transduced populations as indicated. Each number in a quadrant represents the percentage of cells in the quadrant. (A) GATA-1 versus control vector, n = 5; (B) RXRαΔ versus control vector, n = 3. Western blot shows GATA-1 and actin expression of GFPlo versus GFPhi GATA-1-IRES-GFP–transduced cells sorted by FACS. Data are representative of 3 independent experiments. Florian Göbel et al. Blood 2009;114:3813-3821 ©2009 by American Society of Hematology

Model for the role of GATA-1 and VDR in myeloid DC subset generation at steady state versus inflammatory conditions. Model for the role of GATA-1 and VDR in myeloid DC subset generation at steady state versus inflammatory conditions. VDR is induced downstream of TGF-β1 during LC differentiation. In contrast, DCs derived from monocytes in response to IL-4 down-regulate VDR. IL-4 induces GATA-1, which in turn represses VDR. Our study showed that VDR and GATA-1 are functionally involved in myeloid DC subset differentiation. Florian Göbel et al. Blood 2009;114:3813-3821 ©2009 by American Society of Hematology