Mendelelian Genetics Mendelian Genetics 11/23/2018

Slides:



Advertisements
Similar presentations
copyright cmassengale
Advertisements

1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale Question: How Are Traits Passed From Parents To Offspring?
copyright cmassengale
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
MENDELIAN GENETICS 1. GREGOR JOHANN MENDEL  Austrian monk  Studied the inheritance of traits in pea plants  Developed the laws of inheritance  Mendel's.
1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Basic Genetics *. View video at:
1 Mendelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Warm-up (11/14 & 11/15) Look over the cell respiration test - make sure you understand why you missed anything Pick up a test from the front When you.
M endelian Genetics. Austrian Monk Father of Genetics Pea Plant Experiments ( )
Mendelian Genetics. Gregor Mendel ( ) Responsible for the laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale. 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Intro to Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale. 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
MENDELIAN GENETICS HS Biology Standard - Comprehend Mendel’s laws of genetics and how these laws affect variability within species [law of independent.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
1 Mendel and Heredity 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Genetics by Mendel 1 ONE GENE WITH TWO ALLELES CONTROLING TWO CONTRASTING/ ALTERNATIVE FORMS OF A SPECIFIC TRAIT IS CALLED MENDELELIAN GENETICS.
1 Mendelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelian Genetics copyright cmassengale 2 Genetic Terminology  Trait - any characteristic that can be passed from parent to offspring  Heredity.
MENDEL’S LAWS copyright cmassengale 1. RESULTS OF MONOHYBRID CROSSES  Inheritable factors or genes are responsible for all heritable characteristics.
1 Intro to Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
Intro to Mendelelian Genetics
Mendelian Genetics Chapter 6. “Father of Genetics”: Gregor Johann Mendel Austrian monk Studied the inheritance of traits in pea plants Developed the laws.
1 Mendelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
TODAY (11/29) Turn in your Mutated Monsters Worksheet
Mendelian Genetics Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
1 Mendelelian Genetics copyright cmassengale 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits copyright cmassengale.
1 Please pick up a copy of the notes. Please pick up a copy of the notes.
1 Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
1 Mendelelian Genetics copyright cmassengale Why do we look like our parents? copyright cmassengale 2.
Quick Review Mitosis, Karyotypes and Meiosis 1. Meiosis KM2 Karyotyping.
1 Mendelelian Genetics copyright cmassengale Bellringer Define: -Dominant -Recessive -Genotype -Phenotype -Carrier -Allele If B is the allele for Brown.
1 Intro to Mendelelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Mendelelian Genetics copyright cmassengale1 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
SS 3 Biology Lesson WK 2 TOPIC: Inheritance (Genetics)
Intro to Mendelelian Genetics
copyright cmassengale
copyright cmassengale
Mendelian Genetics 6/14/2018 Genetics.
copyright cmassengale
copyright cmassengale
copyright cmassengale
Mendelian Genetics 7/30/2018 Mendel’s Laws.
copyright cmassengale
Genetics basics Mendelian activity.
Genetic Terminology Gene - Segment of DNA that codes for formation of a protein Locus – Position of gene on a chromosome Trait - any characteristic that.
Mendelelian Genetics Mendelian Genetics 11/7/2018
Mendelian Genetics 11/7/2018 Mendelelian Genetics.
EQ: How is the work of Gregor Mendel pertinent in genetics today?
Intro to Mendelelian Genetics
copyright cmassengale
Mendelian Genetics 12/2/2018 Mendelelian Genetics.
copyright cmassengale
Gregor Johann Mendel Austrian monk, mathematician by trade
Mendelian Genetics 12/6/2018 Mendel’s Laws.
Mendelelian Genetics Mendelian Genetics 1/16/2019
copyright cmassengale
Bell Ringer Monday November 13, 2017
Mendelian Genetics 2/24/2019 Mendelelian Genetics.
Bell Ringer Tuesday November 15, 2016
copyright cmassengale
Mendelian Genetics.
Presentation transcript:

Mendelelian Genetics Mendelian Genetics 11/23/2018 copyright cmassengale

Responsible for the Laws governing Inheritance of Traits Mendelian Genetics 11/23/2018 Gregor Mendel (1822-1884) Responsible for the Laws governing Inheritance of Traits

Gregor Johann Mendel Austrian monk Mendelian Genetics 11/23/2018 Gregor Johann Mendel Austrian monk Studied the inheritance of traits in pea plants Developed the laws of inheritance Mendel's work was not recognized until the turn of the 20th century

Mendelian Genetics 11/23/2018 Gregor Johann Mendel Between 1856 and 1863, Mendel cultivated and tested some 28,000 pea plants He found that the plants' offspring retained traits of the parents Called the “Father of Genetics"

Site of Gregor Mendel’s experimental garden in the Czech Republic Mendelian Genetics 11/23/2018 Site of Gregor Mendel’s experimental garden in the Czech Republic Fig. 5.co copyright cmassengale

Particulate Inheritance Mendelian Genetics 11/23/2018 Particulate Inheritance Mendel stated that physical traits are inherited as “particles” Mendel did not know that the “particles” were actually Chromosomes & DNA

Types of Genetic Crosses Mendelian Genetics 11/23/2018 Types of Genetic Crosses Monohybrid cross - cross involving a single trait e.g. flower color Dihybrid cross - cross involving two traits e.g. flower color & plant height

Mendel’s Pea Plant Experiments Mendelian Genetics 11/23/2018 Mendel’s Pea Plant Experiments

Why peas, Pisum sativum? Can be grown in a small area Mendelian Genetics 11/23/2018 Why peas, Pisum sativum? Can be grown in a small area Produce lots of offspring Produce pure plants when allowed to self- pollinate several generations Can be artificially cross-pollinated

Reproduction in Flowering Plants Mendelian Genetics 11/23/2018 Reproduction in Flowering Plants Pollen contains sperm Produced by the stamen Ovary contains eggs Found inside the flower Pollen carries sperm to the eggs for fertilization Self-fertilization can occur in the same flower Cross-fertilization can occur between flowers

Mendel’s Experimental Methods Mendelian Genetics 11/23/2018 Mendel’s Experimental Methods Mendel hand-pollinated flowers using a paintbrush He could snip the stamens to prevent self- pollination Covered each flower with a cloth bag He traced traits through the several generations

Mendelian Genetics 11/23/2018 How Mendel Began Mendel produced pure strains by allowing the plants to self-pollinate for several generations

Eight Pea Plant Traits Seed shape --- Round (R) or Wrinkled (r) Mendelian Genetics 11/23/2018 Eight Pea Plant Traits Seed shape --- Round (R) or Wrinkled (r) Seed Color ---- Yellow (Y) or  Green (y) Pod Shape --- Smooth (S) or wrinkled (s) Pod Color ---  Green (G) or Yellow (g) Seed Coat Color ---Gray (G) or White (g) Flower position---Axial (A) or Terminal (a) Plant Height --- Tall (T) or Short (t) Flower color --- Purple (P) or white (p)

Mendelian Genetics 11/23/2018

Mendelian Genetics 11/23/2018

Mendel’s Experimental Results Mendelian Genetics 11/23/2018 Mendel’s Experimental Results

Did the observed ratio match the theoretical ratio? Mendelian Genetics 11/23/2018 Did the observed ratio match the theoretical ratio? The theoretical or expected ratio of plants producing round or wrinkled seeds is 3 round :1 wrinkled Mendel’s observed ratio was 2.96:1 The discrepancy is due to statistical error The larger the sample the more nearly the results approximate to the theoretical ratio

Mendelian Genetics 11/23/2018 Generation “Gap” Parental P1 Generation = the parental generation in a breeding experiment. F1 generation = the first-generation offspring in a breeding experiment. (1st filial generation) From breeding individuals from the P1 generation F2 generation = the second-generation offspring in a breeding experiment. (2nd filial generation) From breeding individuals from the F1 generation

Following the Generations Mendelian Genetics 11/23/2018 Following the Generations Cross 2 Pure Plants TT x tt Results in all Hybrids Tt Cross 2 Hybrids get 3 Tall & 1 Short TT, Tt, tt

Mendelian Genetics 11/23/2018 Mendel’s Laws copyright cmassengale

Mendelian Genetics 11/23/2018 1. Law of Dominance In a cross of parents that are pure for contrasting traits, only one form of the trait will appear in the next generation. All the offspring will be heterozygous and express only the dominant trait. RR x rr yields all Rr (round seeds)

Mendelian Genetics 11/23/2018 Law of Dominance

Mendelian Genetics 11/23/2018 2. Law of Segregation During the formation of gametes (eggs or sperm), the two alleles responsible for a trait separate from each other. Alleles for a trait are then "recombined" at fertilization, producing the genotype for the traits of the offspring.

Applying the Law of Segregation Mendelian Genetics 11/23/2018 Applying the Law of Segregation

3. Law of Independent Assortment Mendelian Genetics 11/23/2018 3. Law of Independent Assortment Alleles for different traits are distributed to sex cells (& offspring) independently of one another. This law can be illustrated using dihybrid crosses.

Mendelian Genetics 11/23/2018 Dihybrid Cross A breeding experiment that tracks the inheritance of two traits. Mendel’s “Law of Independent Assortment” a. Each pair of alleles segregates independently during gamete formation b. Formula: 2n (n = # of heterozygotes)

Remember: 2n (n = # of heterozygotes) 1. RrYy 2. AaBbCCDd Mendelian Genetics 11/23/2018 Question: How many gametes will be produced for the following allele arrangements? Remember: 2n (n = # of heterozygotes) 1. RrYy 2. AaBbCCDd 3. MmNnOoPPQQRrssTtQq

Answer: 1. RrYy: 2n = 22 = 4 gametes RY Ry rY ry Mendelian Genetics 11/23/2018 Answer: 1. RrYy: 2n = 22 = 4 gametes RY Ry rY ry 2. AaBbCCDd: 2n = 23 = 8 gametes ABCD ABCd AbCD AbCd aBCD aBCd abCD abCD 3. MmNnOoPPQQRrssTtQq: 2n = 26 = 64 gametes

All possible gamete combinations Mendelian Genetics 11/23/2018 Dihybrid Cross Traits: Seed shape & Seed color Alleles: R round r wrinkled Y yellow y green RrYy x RrYy RY Ry rY ry RY Ry rY ry All possible gamete combinations

Mendelian Genetics 11/23/2018 Dihybrid Cross RY Ry rY ry RY Ry rY ry

Dihybrid Cross RY Ry rY ry Round/Yellow: 9 Round/green: 3 Mendelian Genetics 11/23/2018 Dihybrid Cross RY Ry rY ry Round/Yellow: 9 Round/green: 3 wrinkled/Yellow: 3 wrinkled/green: 1 9:3:3:1 phenotypic ratio RRYY RRYy RrYY RrYy RRyy Rryy rrYY rrYy rryy

Mendelian Genetics 11/23/2018 Dihybrid Cross Round/Yellow: 9 Round/green: 3 wrinkled/Yellow: 3 wrinkled/green: 1 9:3:3:1

Summary of Mendel’s laws Mendelian Genetics 11/23/2018 Summary of Mendel’s laws LAW PARENT CROSS OFFSPRING DOMINANCE TT x tt tall x short 100% Tt tall SEGREGATION Tt x Tt tall x tall 75% tall 25% short INDEPENDENT ASSORTMENT RrGg x RrGg round & green x round & green 9/16 round seeds & green pods 3/16 round seeds & yellow pods 3/16 wrinkled seeds & green pods 1/16 wrinkled seeds & yellow pods