Gene regulation Section 12- 5 Pages 309-312.

Slides:



Advertisements
Similar presentations
Copyright Pearson Prentice Hall
Advertisements

Gene Regulation and Expression
Regulating Gene Expression Turning Genes On and Off.
Gene Regulation Section 12–5
Foothill High School Science Department DNA & RNA Gene Regulation.
Section 12 – 5 Gene Regulation
JEOPARDY #2 DNA and RNA Chapter 12 S2C06 Jeopardy Review
1 Review What genes control cell differentiation during development Compare and Contrast How is the way Hox genes are expressed in mice similar and different.
Slide 1 of 26 Copyright Pearson Prentice Hall 12-5 Gene Regulation Fruit fly chromosome Fruit fly embryo Adult fruit fly Mouse chromosomes Mouse embryo.
12-5 Gene Regulation.
G ENE R EGULATION The turning on and off of genes Allows organisms to respond to environmental changes Ex: lac Operon in bacteria.
Four of the many different types of human cells: They all share the same genome. What makes them different?
Control of Gene Expression Big Idea 3: Living systems store, retrieve, transmit, and respond to info essential to life processes.
Gene Regulation Section 12–5
Activate Prior Knowledge
Control of gene expression Unit but different cells have different functions and look and act differently! WHY? Different sets of genes are expressed.
Gene Expression and Regulation
Gene Regulation An expressed gene is one that is transcribed into RNA
Gene Regulation and Cancer. Gene Regulation At any given time, most of the thousands of genes in a cell are not needed. How do cells “turn on” (express)
Part Transcription 1 Transcription 2 Translation.
Biology Chapter 12 Section 5 Gene Regulation. Objectives ______________a typical gene _________how lac genes are turned off and on __________how most.
6D Gene expression the process by which the heritable information in a gene, the sequence of DNA base pairs, is made into a functional gene product, such.
End Show Slide 1 of 26 Copyright Pearson Prentice Hall 12-5 Gene Regulation Fruit fly chromosome Fruit fly embryo Adult fruit fly Mouse chromosomes Mouse.
12.5 Gene Regulation. 1. Gene Regulation In any organism, only a few genes are expressed at each time Operon: group of genes that operate together Scientists.
Gene Regulation How does your body know when to make certain proteins? Unit 4 – Chapter 12-5.
Section 2 CHAPTER 10. PROTEIN SYNTHESIS IN PROKARYOTES Both prokaryotic and eukaryotic cells are able to regulate which genes are expressed and which.
Gene Regulation in Prokaryotes - plasmid, not protected by nuclear envelope - DNA is not bound up with histones -One of the best known pathways is the.
Gene Regulation and Expression. Learning Objectives  Describe gene regulation in prokaryotes.  Explain how most eukaryotic genes are regulated.  Relate.
Gene Expression. Remember, every cell in your body contains the exact same DNA… …so why does a muscle cell have different structure and function than.
Gene Expression and Regulation
Prokaryotic cells turn genes on and off by controlling transcription.
Eukaryotic Gene Regulation
KEY CONCEPT Gene expression is carefully regulated in both prokaryotic and eukaryotic cells. Chapter 11 – Gene Expression.
Chapter 13: Gene Regulation. The Big Picture… A cell contains more genes than it expresses at any given time – why? Why are cells in multicellular organisms.
Gene Expression & Regulation Chapter 8.6. KEY CONCEPT Gene expression is carefully regulated in both prokaryotic and eukaryotic cells.
DNA & RNA Gene Expression and Regulation Gene Regulation How Does A Cell Know? Which Gene To Express Which Gene To Express& Which Gene Should Stay Silent?
FOOTHILL HIGH SCHOOL SCIENCE DEPARTMENT Chapter 12 DNA & RNA Section 12 – 5 Gene Regulation.
Eukaryotic Gene Regulation
How does your body know when to make proteins?
How does your body know when to make proteins? Unit 4 – Chapter 12-5
GENE REGULATION
12-5 Gene Regulation Pages 309 – 312 Block 1 Baker.
Control of Gene Expression
Gene Regulation.
Prokaryotic cells turn genes on and off by controlling transcription.
Prokaryotic cells turn genes on and off by controlling transcription.
Chapter 12.5 Gene Regulation.
The Operon Hypothesis The Operon Hypothesis was developed by 2 researchers: Jacob and Monod It explains how genes are regulated in prokaryotes. They received.
Bellwork: How is gene regulation in prokaryotes and Eukaryotes similar
Copyright Pearson Prentice Hall
Gene Regulation Section 12–5
12-5 Gene Regulation.
Prokaryotic cells turn genes on and off by controlling transcription.
Section 14.3 Gene Expression and Regulation Part 1
Unit 7: Molecular Genetics
Copyright Pearson Prentice Hall
Prokaryotic cells turn genes on and off by controlling transcription.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Prokaryotic (Bacterial) Gene Regulation
Prokaryotic cells turn genes on and off by controlling transcription.
Prokaryotic cells turn genes on and off by controlling transcription.
13.4 Gene regulation 5/16/19 TB page
Copyright Pearson Prentice Hall
Gene regulation and expression
Gene Regulation A gene (DNA) is expressed when it is made into a functional product (protein/enzyme)
Copyright Pearson Prentice Hall
DNA AND RNA 12-5 Gene Regulation.
Prokaryotic cells turn genes on and off by controlling transcription.
Presentation transcript:

Gene regulation Section 12- 5 Pages 309-312

Regulation of genes Operon is a group /cluster of genes tha work together Lac genes turned on by lactose (enzyme) and turned off by a repressor Genes can use proteins to help speed up transcription ex.: open up a tightly packed chromatin attracts the RNA polymerase blocks access to a gene

TATA Unique to eukaryotic genes Helps in regulation

Hox Genes Control development & differentiation Cell specialization Tissue specialization All are descended from the genes of a common ancestor

A group of genes that operates together is a(an) promoter. operon. operator. intron.

Repressors function to turn genes off. produce lactose. turn genes on. slow cell division.

Which of the following is unique to the regulation of eukaryotic genes? promoter sequences TATA box different start codons regulatory proteins

Organs and tissues that develop in various parts of embryos are controlled by regulation sites. RNA polymerase. hox genes. DNA polymerase.