CEPC-SppC Accelerator CDR Copmpletion at the end of 2017

Slides:



Advertisements
Similar presentations
Study of the Luminosity of LHeC, a Lepton Proton Collider in the LHC Tunnel CERN June F. Willeke, DESY.
Advertisements

Qingjin XU Institute of High Energy Physics (IHEP)
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
1 BINP Tau-Charm Project 3 February 2010, KEK, Tsukuba E.Levichev For the BINP C-Tau team.
CEPC parameter choice and partial double ring design
Interaction region design for the partial double ring scheme
CEPC APDR Study Zhenchao LIU
HOM coupler design and collective instability study
100km CEPC parameter and lattice design
The Studies of Dynamic Aperture on CEPC
CEPC parameter optimization and lattice design
Primary estimation of CEPC beam dilution and beam halo
Large Booster and Collider Ring
The 13th Symposium on Accelerator Physics
Cavity-beam interaction and Longitudinal beam dynamics for CEPC DR&APDR 宫殿君
Issues in CEPC pretzel and partial double ring scheme design
Optimization of CEPC Dynamic Aperture
Lattice design for CEPC PDR
CEPC accelerator physics
Status of CEPC lattice design
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
Lattice design for CEPC PDR
Beam Loading Effect in CEPC APDR
Institute of High Energy Physics, Beijing
BINP Tau-Charm Project
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
The design of interaction region
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
CEPC APDR SRF considerations(3)
Some CEPC SRF considerations
CEPC partial double ring scheme and crab-waist parameters
CEPC Injector Damping Ring
CEPC parameter optimization and lattice design
Interaction region design for the partial double ring scheme
CEPC partial double ring scheme and crab-waist parameters
Comparison of the final focus design
LHC (SSC) Byung Yunn CASA.
Lattice design for the CEPC collider ring
ILC 3.2 km DR design based on FODO lattice (DMC3)
CEPC APDR and PDR scheme
CEPC partial double ring FFS design
ILC 3.2 km DR design based on FODO lattice (DMC3)
CEPC advanced partial double ring scheme
CEPC partial double ring FFS design
CEPC parameter optimization and lattice design
CEPC DA optimization with downhill Simplex
CEPC Partial Double Ring Lattice Design and DA Study
Update of DA Study for the CEPC Partial Double Ring Scheme
CEPC parameter optimization and lattice design
CEPC APDR SRF considerations(4) -LEP Cavity Voltage &BBU
CEPC parameter and DA optimization
Update of Lattice Design for CEPC Main Ring
CEPC Partial Double Ring Parameter Update
CEPC optics and booster optics
Update of Lattice Design for CEPC Main Ring
Lattice design for double ring scheme of CEPC main ring
Update of lattice design for CEPC main ring
CEPC APDR SRF and beam dynamics study
CEPC SRF System Jiyuan Zhai
Lattice design and dynamic aperture optimization for CEPC main ring
Simulation check of main parameters (wd )
Lattice Design of the Collider Ring toward TDR
Lattice design for CEPC PDR
Lattice design for CEPC
CEPC APDR and PDR scheme
CEPC parameter optimization and lattice design
Lattice design for CEPC PDR
MEIC Alternative Design Part III
CEPC Parameter /DA optimization with downhill Simplex
Presentation transcript:

CEPC-SppC Accelerator CDR Copmpletion at the end of 2017 J. Gao Institute of High Energy Physics Beijing, CAS CEPC-SppC Study Group Meeting April 19-21, 2017,Central China Normal University, Wuhan

Physics goals of CEPC-SppC Electron-positron collider(90, 250 GeV) Higgs Factory(106 Higgs): Precision study of Higgs(mH, JPC, couplings),Similar & complementary to ILC Looking for hints of new physics Z & W factory(1010 Z0): precision test of SM Rare decays ? Flavor factory: b, c, t and QCD studies Proton-proton collider(~100 TeV) Directly search for new physics beyond SM Precision test of SM e.g., h3 & h4 couplings Precision measurement + searches: Complementary with each other !

CEPC Design –Higgs Parameters CEPC Design – Z-pole Parameters Design Goal Particles e+, e- Center of mass energy 2*120 GeV Luminosity (peak) >2*10^34/cm^2s No. of IPs 2 CEPC Design – Z-pole Parameters Parameter Design Goal Particles e+, e- Center of mass energy 2*45.5 GeV Integrated luminosity (peak) >10^34/cm^2s No. of IPs 2 Polarization to be considered in the second round of design 3

CEPC Accelerator Chain Energy Ramp 10 >45/120GeV Injector Booster Collider Electron Positron 10 GeV 45/120 GeV Three rings in the sane channel: CEPC & booster SppC Booster Cycle (0.1 Hz) The CDR is to give the detailed design for all systems

Preliminary Layout of CEPC IR S. Bai

Ways to CDR at the end of 2017 CDR means: CEPC-SppC CDR is a minimum design safisfying the basic requirements (goals) for CEPC and SppC with reliable technologies in good compatibility. CDR answer big basic question for the fesibility of the physics goal with design. All sub-systems should give “yes” or “not” answers with detailled design on CDR goal. When all “yes” answers should be reached, before the end of 2017. With CDR design, hardware requirements are knownas as reference for technologies. After CDR, there will be anouther round of so-called optimization including studies of alternative options of all sub-systems with designs and technologies innovations. TDR will include higher potential, and will not be simply overlap CDR but cover CDR.

Parameters for CEPC double ring (wangdou20170306-100km_2mmy) D. Wang   Pre-CDR tt Higgs W Z Number of IPs 2 Energy (GeV) 120 175 80 45.5 Circumference (km) 54 100 SR loss/turn (GeV) 3.1 7.55 1.67 0.33 0.034 Half crossing angle (mrad) 16.5 Piwinski angle 1.6 3.19 5.69 4.29 Ne/bunch (1011) 3.79 1.41 0.968 0.365 0.455 Bunch number 50 98 644 (412) 5534 21300 Beam current (mA) 16.6 6.64 29.97 (19.2) 97.1 465.8 SR power /beam (MW) 51.7 50 (32) 32 16.1 Bending radius (km) 6.1 11 Momentum compaction (10-5) 3.4 1.3 1.14 4.49 IP x/y (m) 0.8/0.0012 0.2/0.002 0.171/0.002 0.171 /0.002 0.16/0.002 Emittance x/y (nm) 6.12/0.018 3.19/0.0097 1.31/0.004 0.57/0.0017 1.48/0.0078 Transverse IP (um) 69.97/0.15 25.3/0.14 15.0/0.089 9.9/0.059 15.4/0.125 x/y/IP 0.118/0.083 0.016/0.055 0.013/0.083 0.0055/0.062 0.008/0.054 RF Phase (degree) 153.0 122.2 128 126.9 165.3 VRF (GV) 6.87 8.92 2.1 0.41 0.14 f RF (MHz) (harmonic) 650 650 (217800) Nature z (mm) 2.14 2.62 2.72 3.37 3.97 Total z (mm) 2.65 2.7 2.9 4.0 HOM power/cavity (kw) 3.6 (5cell) 0.53(5cell) 0.64(2cell) (0.41) 0.36(2cell) 1.99(2cell) Energy spread (%) 0.13 0.098 0.065 0.037 Energy acceptance (%) 1.5 Energy acceptance by RF (%) 6 2.6 1.1 n 0.23 0.26 0.15 0.12 Life time due to beamstrahlung_cal (minute) 47 52 F (hour glass) 0.68 0.89 0.96 0.98 Lmax/IP (1034cm-2s-1) 2.04 0.62 3.13 (2.0) 5.15 11.9

MDI parameters (some) L*=2.2m Crossing angle: 33mrad Strength of QD0: 150T/m Strength of detector solinoid: 3T Strength of anti-solinoid: 6.6T

SPPC Parameter Choice and Comparation

SPPC main parameters Parameter Unit Value PreCDR CDR Ultimate Circumference km 54.4 100 C.M. energy TeV 70.6 75 125-150 Dipole field T 20 12 20-24 Injection energy 2.1 4.2 Number of IPs 2 Nominal luminosity per IP cm-2s-1 1.2e35 1.0e35 - Beta function at collision m 0.75 Circulating beam current A 1.0 0.7 Bunch separation ns 25 Bunch population 2.0e11 1.5e11 SR power per beam MW 1.1 SR heat load per aperture @arc W/m 45 13

CEPC Double Ring Lattice Design Yiwei Wang 2.0 km 1.25 km 2.2 km common RF cavities combined magnet common RF cavities

SPPC Layout

CDR CEPC-SPPC Layout Revised CEPC-SPPC PreCDR (March, 2015) CDR SPPC SPPC CEPC CEPC Maybe only 1.0 m left CDR layout: 1) SppC outside or inside of CEPC 2) Tunnel width might go to 7m~7.5m 3) CEPC and SppC with same length for ep collision

CEPC-SppC CDR Schedule Time line: May 2017: MDI and CEPC-SppC layout fixed June 2017: Sub-system designs July 2017: Sub-system designs August 2017: Sub-system designs September 2017: All sub-sysyems' “yes” collected without errors October 2017: All sub-systems work on errors and connections (injection and extractions) November 2017: All sub-systems' “yes” answer collected with errors December 2017: All sub-systems finished writing April, 2018: CDR Printed