Probing Supersymmetry with Neutral Current Scattering Experiments

Slides:



Advertisements
Similar presentations
IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech)
Advertisements

SUSY can affect scattering Parity-Violating electron scattering “Weak Charge” ~ sin 2  W ~ 0.1.
Gravitino Dark Matter & R-Parity Violation M. Lola MEXT-CT (work with P. Osland and A. Raklev) Prospects for the detection of Dark Matter Spain,
Outlook: Higgs, SUSY, flavor Ken-ichi Hikasa (Tohoku U.) Fourth Workshop, Origin of Mass and SUSY March 8, 2006, Epochal Tsukuba.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Sub Z Supersymmetry M.J. Ramsey-Musolf Precision Electroweak Studies in Nuclear Physics.
B. Dutta Texas A&M University Phys.Rev.Lett.100:181801,2008; arXiv: ; To appear Grand Unified Models, Proton Decay and Phase of Collaborator: Yukihiro.
Yingchuan Li Weak Mixing Angle and EIC INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep. 17th 2010.
K. Kumar, W. Marciano, Y. Li Electroweak physics at EIC - Summary of week 7 INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider.
Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous.
2-nd Vienna Central European Seminar, Nov 25-27, Rare Meson Decays in Theories Beyond the Standard Model A. Ali (DESY), A. V. Borisov, M. V. Sidorova.
Lepton Photon Symposium LP01 Searches for New Particles Gail G. Hanson Indiana University.
Search for R-parity violating Supersymmetric effects in the neutron beta decay N. Yamanaka (Osaka University) 2009 年 8 月 12 日 at KEK In collaboration with.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
Center for theoretical Physics at BUE
Looking Through The Mirror: Parity Violation in the Future M.J. Ramsey-Musolf + many students, post- docs, collaborators, and colleagues.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Electroweak Physics at an Electron-Ion Collider M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Chiral Symmetries and Low Energy Searches for New Physics M.J. Ramsey-Musolf Caltech Wisconsin-Madison.
Xiaochao Zheng, International Workshop on Positrons at JLab 1/64 C 3q Measurement Using Polarized e + /e - Beams at JLab – Introduction — Standard Model.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
7 April, 2005SymmetriesTests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation:
Yingchuan Li Electroweak physics at EIC Brookhaven National Lab Feb. 3rd 2011, BNL.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
Gravitino Dark Matter in R-violating SUSY M. Lola MEXT-CT Work with N.E.Bomark, P.Osland and A.Raklev.
The Search For Supersymmetry Liam Malone and Matthew French.
Electroweak Physics At The EIC (Electron-Ion Collider) William J. Marciano (May 17, 2010) 1. WEAK NC PARITY VIOLATION i) APV vs Pol Electron Scattering.
Standard Model - Standard Model prediction (postulated that neutrinos are massless, consistent with observation that individual lepton flavors seemed to.
1 Why Does the Standard Model Need the Higgs Boson ? II Augusto Barroso Sesimbra 2007.
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
Search for Anomalous Production of Multi-lepton Events at CDF Alon Attal Outline  Motivation  R p V SUSY  CDF & lepton detection  Analysis  Results.
新学術領域研究 先端加速器LHCが切り拓くテラスケールの素粒子物理学 ~真空と時空への新たな挑戦~ 研究会 2013年5月23日〜25日
1-lepton + Multijets Analysis bRPV interpretation
Flavour Physics in and beyond the Standard Model
Symmetries in Nuclear Physics
Radiative Flavor Violation
Physics Overview Yasuhiro Okada (KEK)
Hadronic EDMs in SUSY GUTs
Hunting the Last Missing Particle of the Standard Model
Section VI - Weak Interactions
Search for New Physics beyond the SM
Exploring the Standard Model with JLab at 12 GeV
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
Precision Probes for Physics Beyond the Standard Model
Electroweak Physics at the EIC
Higgs and SUSY at future colliders
Deep Inelastic Parity Robert Michaels, JLab Electroweak Physics
Lepton Flavor Violation
Probing New Physics with Neutral Current Measurements
Searching for SUSY in B Decays
Exploring SUSY breaking mechanism with B decays
Supersymmetric Dark Matter
Phenomenology of SUSY Models with Non-universal Sfermions
Baryogenesis at Electroweak scale
Shufang Su • U. of Arizona
Flavour and Non-universal Gauge Interaction
Yasuhiro Okada (KEK/Sokendai) October 18, 2007
岡田安弘(KEK/総研大) 2007年10月26日 KEK 第三回 J-PARC遅い取り出しユーザー加速器連絡会
Physics at a Linear Collider
CEPC-Physics Workshop
Yasuhiro Okada (KEK) FPCP 2004, Deagu, Korea October 7, 2004
Physics beyond the SM in Kaon decays --Theory--
Muon Physics Yasuhiro Okada (KEK) November 18, 2005
Searching for New Physics in muon lepton flavor violating processes
SUSY Searches with ZEUS
Lepton Flavor Violation
Analysis of enhanced effects in MSSM from the GUT scale
SUSY SEARCHES WITH ATLAS
SUSY and B physics observables
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

Probing Supersymmetry with Neutral Current Scattering Experiments Shufang Su • U. of Arizona

Sub-Z precision measurements neutral current scattering heavy quark physics CP violation, EDM Rare K-decay, CKM unitarity muon g-2 lepton flavor violation … polarized ee scattering (SLAC E158) polarized ep scattering (JLab Qweak) neutrino-nucleus scattering (NuTeV) A. Kurylov, M. Ramsey-Musolf, SS S. Su LOOPFESTIII

Outline motivation parity-violating electron scattering experiments radiative corrections to weak charge QW analysis of SUSY contributions to QW MSSM contributions RPV analysis distinguish various new physics / SUSY NuTeV experiment conclusion S. Su LOOPFESTIII

Motivation high precision low energy experiment available - high precision low energy experiment available - muon g-2: M=m , new  2x10-9, exp < 10-9 -decay, -decay: M=mW , new  10-3, exp  10-3 parity-violating electron scattering: M=mW , new  10-3, 1/Qe,pW 10 more sensitive to new physics need exp  10-2 “easier” experiment indirect+direct: complementary information consistency test of theory at loop level size of loop effects from new physics: (/)(M/Mnew)2 Qe,pW  1-4 sin2W  0.1 probe new physics off the Z-resonance - sensitive to new physics not mix with Z S. Su LOOPFESTIII

Test of sin2W running sin2W(0) - sin2W(mZ2) = +0.007 QCsw: agree Q2=0 NuTeV: +3 Q2=20 (GeV)2 parity-violating electron scattering (PVES) ee Moller scattering (SLAC) QeW ep elastic scattering (J-lab) QpW - -  sin2W  0.0007 at Q2=0.03 (GeV)2 clean environment: Hydrogen target theoretically clean: small hadronic uncertainties tree level  0.1  sensitive to new physics S. Su LOOPFESTIII

Goal Develop consistency checks for theories of new physics - Develop consistency checks for theories of new physics using the low energy precision measurements minimal Supersymmetric extension of SM (MSSM) SUSY: most promising candidate for new physics solution to Hierarchy problem gauge coupling unification provide a natural electroweak symmetry breaking dark matter candidate ? (PVES) with R-parity : loop corrections without R-parity: tree-level contribution low-energy precision measurements PVES: weak charge QeW , QpW , ( QCsW ) - NuTeV: R() - S. Su LOOPFESTIII

Weak charge QW A N+-N- ALR  QfW N++N- V geA = Ie3 weak charge QfW = 2gfV = 2 If3 -4Qfs2 ep Qweak exp QpW ee Moller exp QeW Qe,pW tree 1-4s2 -(1-4s2) Qe,pW loop 0.0721 -0.0449 exp precision 4% 8%  sin2W 0.0007 0.0009 SM running 10  8  QCsW :  sin2W = 0.0021 NuTeV:  sin2W = 0.0016 S. Su LOOPFESTIII

General structure of radiative corrections to QfW - Including radiative corrections: QfW =  (2If3 - 4  Qf s2) + f , : universal, f: depend on fermion species  = 1+SM+SUSY,  = 1+SM+SUSY, f= fSM+fSUSY correction to muon life time  S. Su LOOPFESTIII

Radiative contributions - QfW =  (2If3 - 4  Qf s2) + f correction to , G and mZs2  f S. Su LOOPFESTIII

MSSM particle contents - Spin differ by 1/2 SM particle superpartner mass parameter mqL2,  mqR2,  mqLR2  mlL2,  mlR2,  mlLR2  , tan=vu/vd M3 M2 M1 S. Su LOOPFESTIII

One loop SUSY contributions to PVES - gauge boson self-energies external leg corrections vertex corrections box diagrams S. Su LOOPFESTIII

50 GeV < mq, ml, M1,2,  < 1000 GeV Numerical analysis - Model-independent analysis MSSM parameter range: random scan 50 GeV < mq, ml, M1,2,  < 1000 GeV 1.4 < tan < 60 ~ hard to impose bounds on certain MSSM parameter show the possible range of MSSM corrections impose exp search limit on SUSY particles impose S-T 95% CL constraints impose g-2 constraints (2nd slepton LR mixing) S. Su LOOPFESTIII

Correction to weak charge - QfW =  (2Tf3 - 4Qf  s2) + f QeW and QpW correlated dominant :  (<0)  negative shift in sin2W  (QpW)SUSY / (QpW)SM < 4%,  (QeW)SUSY / (QeW)SM < 8% S. Su LOOPFESTIII

Dominant contributions - QfW =  (2Tf3 - 4Qf  s2) + f non-universal corrections vertex + wavefunction : cancel box diagrams numerically suppressed  contribution suppressed by (1-4 s2) dominant contribution from   (<0)  negative shift in sin2W S. Su LOOPFESTIII

R-parity General MSSM, including B,L-violating operators ijk ’ijk dangerous  introduce proton decay R-parity SM particle: even superparticle: odd stable LSP as dark matter candidate RPV: only look at L-violating operator S. Su LOOPFESTIII

R-parity violating (RPV) RPV operators contribute to Qe,pW at tree level RPV 95% CL MSSM loop Exp constraints  decay: |Vud| = -0.00145  0.0007 APV(Cs):  QWCs = -0.0040  0.0066 Re/ :  Re/ = -0.0042  0.0033 G:  G = 0.00025  0.00188 QpW No SUSY dark matter I) Obtain 95% CL allowed region in RPV coefficients II) Evaluate  QWe and  QWp G S. Su LOOPFESTIII

Correlation between QpW and QeW -  QW (Z,N)=(2Z+N)  QuW +(2N+Z)  QdW  QuW >0  QdW <0 SUSY correction to heavy nuclei QW   QW(Z,N) / QW(Z,N) < 0.2 % for Cs Distinguish new physics MSSM: extra Z’: leptoquark: RPV SUSY  QpW  QeW  QCsW small sizable S. Su LOOPFESTIII

Additional PV electron scattering ideas - Czarnecki, Marciano, Erler et al.  N deep inelastic Linear Collider e-e- DIS-Parity, JLab sin2W DIS-Parity, SLAC APV e+e- LEP, SLD SLAC E158 (ee) JLab Moller (ee) JLab Q-Weak (ep) (GeV) S. Su LOOPFESTIII

NuTeV experiment NC CC wrong-sign contribution! R=-0.0033  0.0015 Davidson et. al., JHEP 02, 037, 2002 MSSM (N  X) (N  l-(+)X) R()  - (-) R=-0.0033  0.0015 R=-0.0019  0.0026 - S. Su LOOPFESTIII

R-parity violating (RPV) RPV operators contribute to R() at tree level NC either wrong sign or too small hard to explain NuTeV deviation CC S. Su LOOPFESTIII

Conclusion Parity-violating ee and ep scattering could be used to test SM and probe new physics MSSM contribution to QeW and QpW is 8% and 4%  1 exp need higher exp precision to constrain SUSY correlation between QeW and QpW distinguish various new physics distinguish various SUSY scenario whether dark matter is SUSY particle ? SUSY contribution to NuTeV result MSSM with R-parity: wrong sign /small negative gluino contribution: size constrained by other considerations hard to explain NuTeV in RPV SUSY is not responsible for the NuTeV deviation other new physics ? hadronic effects ? S. Su LOOPFESTIII