Matan Goldshtein, David B. Lukatsky  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Xiaoshu Chen, Jianzhi Zhang  Cell Systems 
Advertisements

Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Volume 112, Issue 10, Pages (May 2017)
Volume 102, Issue 6, Pages (March 2012)
Precision and Variability in Bacterial Temperature Sensing
Volume 112, Issue 7, Pages (April 2017)
Volume 112, Issue 6, Pages (March 2017)
Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with Similarities to the flamenco Locus of Drosophila  Stefan Grob, Marc W. Schmid, Ueli.
Relation between the Conformational Heterogeneity and Reaction Cycle of Ras: Molecular Simulation of Ras  Chigusa Kobayashi, Shinji Saito  Biophysical.
Nanopore Sequencing: Forcing Improved Resolution
Spermine Condenses DNA, but Not RNA Duplexes
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Tianhui Maria Ma, J. Scott VanEpps, Michael J. Solomon 
Adrien Le Thomas, Georgi K. Marinov, Alexei A. Aravin  Cell Reports 
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Robert M. Elder, Arthi Jayaraman  Biophysical Journal 
Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells
Whole genome characterization of hepatitis B virus quasispecies with massively parallel pyrosequencing  F. Li, D. Zhang, Y. Li, D. Jiang, S. Luo, N. Du,
Mapping Global Histone Acetylation Patterns to Gene Expression
Nonspecific Protein-DNA Binding Is Widespread in the Yeast Genome
Volume 107, Issue 8, Pages (October 2014)
Serum DNA Motifs Predict Disease and Clinical Status in Multiple Sclerosis  Julia Beck, Howard B. Urnovitz, Marina Saresella, Domenico Caputo, Mario Clerici,
Volume 96, Issue 2, Pages (January 2009)
Electronic Transport in DNA
V. Vetri, G. Ossato, V. Militello, M.A. Digman, M. Leone, E. Gratton 
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
Volume 17, Issue 6, Pages (November 2016)
Volume 114, Issue 5, Pages (March 2018)
Volume 108, Issue 7, Pages (April 2015)
Sanjin Marion, Carmen San Martín, Antonio Šiber  Biophysical Journal 
Volume 26, Issue 5, Pages (March 2016)
Validating Solution Ensembles from Molecular Dynamics Simulation by Wide-Angle X- ray Scattering Data  Po-chia Chen, Jochen S. Hub  Biophysical Journal 
Volume 109, Issue 3, Pages (August 2015)
Juan Guan, Harrison Liu, Xiaoyu Shi, Siyu Feng, Bo Huang 
Hongqiang Ma, Jianquan Xu, Jingyi Jin, Yi Huang, Yang Liu 
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Ariel Afek, Itamar Sela, Noa Musa-Lempel, David B. Lukatsky 
Yiider Tseng, Thomas P. Kole, Denis Wirtz  Biophysical Journal 
The Effect of Dye-Dye Interactions on the Spatial Resolution of Single-Molecule FRET Measurements in Nucleic Acids  Nicolas Di Fiori, Amit Meller  Biophysical.
Structural Flexibility of CaV1. 2 and CaV2
On the Quantification of Cellular Velocity Fields
Translational Entropy and DNA Duplex Stability
Volume 108, Issue 1, Pages (January 2015)
Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures  Shruthi Viswanath, Ilan E. Chemmama, Peter Cimermancic,
Alice Qinhua Zhou, Diego Caballero, Corey S. O’Hern, Lynne Regan 
Integrin Molecular Tension within Motile Focal Adhesions
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Volume 111, Issue 11, Pages (December 2016)
Volume 104, Issue 2, Pages (January 2013)
Matthew J. Westacott, Nurin W.F. Ludin, Richard K.P. Benninger 
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Volume 94, Issue 7, Pages (April 2008)
Localization Precision in Stepwise Photobleaching Experiments
Volume 41, Issue 2, Pages (January 2011)
Modelling Toehold-Mediated RNA Strand Displacement
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 109, Issue 7, Pages (October 2015)
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Xiaoshu Chen, Jianzhi Zhang  Cell Systems 
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Wenzhe Ma, Chao Tang, Luhua Lai  Biophysical Journal 
Joana Pinto Vieira, Julien Racle, Vassily Hatzimanikatis 
Amir Marcovitz, Yaakov Levy  Biophysical Journal 
Class-Specific Features of Neuronal Wiring
Progressive DNA Bending Is Made Possible by Gradual Changes in the Torsion Angle of the Glycosyl Bond  Leonardo Pardo, Nina Pastor, Harel Weinstein  Biophysical.
Volume 106, Issue 8, Pages (April 2014)
Evolution of Specificity in Protein-Protein Interactions
Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells
Presentation transcript:

Specificity-Determining DNA Triplet Code for Positioning of Human Preinitiation Complex  Matan Goldshtein, David B. Lukatsky  Biophysical Journal  Volume 112, Issue 10, Pages 2047-2050 (May 2017) DOI: 10.1016/j.bpj.2017.04.023 Copyright © 2017 Biophysical Society Terms and Conditions

Figure 1 Free energy of nonconsensus triplets based TFIIB-DNA binding negatively correlates with the TFIIB binding intensity. Shown here is the computed average free energy of nonconsensus TFIIB-DNA binding and the profile of the average TFIIB binding intensity measured by Pugh and Venters (7) around the TSSs of 6097 genes. The average free energy was calculated every 50 bp, within the interval (−450, 450 bp). To compute the free energy, we used a sliding window of 100 bp. To compute error bars, we calculated the mean free energy for each chromosome and divided the results into five randomly chosen subgroups and computed the mean for each subgroup. The error bars are defined as 1 SD of the mean of free energy between the subgroups. (Inset) Given here is the correlation between the free energy and the TFIIB binding intensity with the Pearson correlation coefficient and the p value. To see this figure in color, go online. Biophysical Journal 2017 112, 2047-2050DOI: (10.1016/j.bpj.2017.04.023) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 2 Enrichment levels of 64 nucleotide triplets computed for the genomic regions characterized by high and low TFIIB binding intensity, respectively. (A) Shown here is triplet enrichment in the region of high TFIIB binding intensity (0, 100 bp). (B) Shown here is triplet enrichment in the region of low TFIIB binding intensity (−450, −350 bp). The enrichment is defined as Δn = n − 〈n〉rand, where n and 〈n〉rand represent the computed average number of nucleotide triplets in the set of actual and randomized DNA sequences, respectively. We used 10 randomized DNA replicas to compute 〈n〉rand. Shaded bars represent triplets that did not exhibit a significant difference based on the two-sample Kolmogorov-Smirnov p value (Table S1). To compute error bars, we divided DNA sequences into four randomly chosen subgroups and computed the mean value of the enrichment for each subgroup. The error bars are defined as 2 SD of the mean between the subgroups. To see this figure in color, go online. Biophysical Journal 2017 112, 2047-2050DOI: (10.1016/j.bpj.2017.04.023) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 3 Normalized pair (binary) correlation functions for the nucleotide spatial distribution. (A–D) Shown here is the computed correlation function ηαα(x) = (Nαα(x) − < Nαα(x) > rand)/L0, where Nαα(x) represents the average number of nucleotide pairs of type α separated by the relative distance x bp, and L0 is the width of the window. We used L0 = 100 bp. We used DNA sequences of 6097 genes for two genomic regions: the region of high TFIIB binding intensity (0, 100 bp) (red lines); and the region of low TFIIB binding intensity (−450, −350 bp) (blue lines). To compute error bars, we calculated the mean for each chromosome and divided the results into five randomly chosen subgroups and computed the mean for each subgroup. The error bars are defined as 1 SD of the mean between the subgroups. The arrows in (C) and (D) emphasize the peaks of the correlation function. These peaks represent the enrichment of repeated DNA triplets. To see this figure in color, go online. Biophysical Journal 2017 112, 2047-2050DOI: (10.1016/j.bpj.2017.04.023) Copyright © 2017 Biophysical Society Terms and Conditions