Chapter 6 Arrays.

Slides:



Advertisements
Similar presentations
Arrays. What is an array An array is used to store a collection of data It is a collection of variables of the same type.
Advertisements

Liang, Introduction to Java Programming, Sixth Edition, (c) 2005 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Chapter 7 Arrays.
Chapter 5 Arrays F Introducing Arrays F Declaring Array Variables, Creating Arrays, and Initializing Arrays F Passing Arrays to Methods F Copying Arrays.
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 6 Arrays (continued)
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 7 Single-Dimensional.
1 Chapter 7 Single-Dimensional Arrays. 2 Arrays Array is a data structure that represents a collection of the same types of data elements. A single-dimensional.
COP3502 Programming Fundamentals for CIS Majors 1 Instructor: Parisa Rashidi.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Liang, Introduction to Java Programming1 Arrays Gang Qian Department of Computer Science University of Central Oklahoma.
Arrays Chapter 8. What if we need to store test scores for all students in our class. We could store each test score as a unique variable: int score1.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 7 Multidimensional.
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Liang, Introduction to C++ Programming, (c) 2007 Pearson Education, Inc. All rights reserved X 1 Chapter 6 Arrays.
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. Chapter 10 Lists 1.
© Copyright 2013 by Pearson Education, Inc. All Rights Reserved. 1 Chapter 7 Single-Dimensional Arrays and C-Strings.
Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All rights reserved. 1 Chapter 6 Arrays.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Chapter 6 Arrays 1 Fall 2012 CS2302: Programming Principles.
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 6 Arrays 1.
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved. 1 Chapter 7 Single-Dimensional Arrays.
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 6 Arrays.
Chapter 5 Arrays F Introducing Arrays F Declaring Array Variables, Creating Arrays, and Initializing Arrays F Passing Arrays to Methods F Copying Arrays.
Chapter 5 Arrays F Introducing Arrays F Declaring Array Variables, Creating Arrays, and Initializing Arrays F Passing Arrays to Methods F Copying Arrays.
Lecture 7: Arrays Michael Hsu CSULA 3 Opening Problem Read one hundred numbers, compute their average, and find out how many numbers are above the average.
Single Dimensional Arrays
Chapter 7: Single-Dimensional Arrays
Write code to prompt for 5 grades, read them in, print “Thank you”, then reprint the 5 grades and their average. System.out.println(“Please enter grade.
Chapter 7 Single-Dimensional Arrays
Chapter 7 Single-Dimensional Arrays
Lecture 3 Linear Search and Binary Search ArrayLists
Chapter 6 Arrays DDC 2133 Programming II.
Chapter 6 Arrays Lecturer: Mrs Rohani Hassan
Chapter 10 Lists.
Chapter 6 Arrays.
Chapter 7 Single-Dimensional Arrays
Chapter 7 Single-Dimensional Arrays
Write code to prompt for 5 grades, read them in, print “Thank you”, then reprint the 5 grades and their average. cout >
Chapter 7 Single-Dimensional Arrays
Chapter 7 Single-Dimensional Arrays
Chapter 6 Arrays.
Chapter 6 Arrays.
Chapter 7 Arrays.
Chapter 6 Arrays.
Chapter 7 Single-Dimensional Arrays
Chapter 7 Arrays Data structures Related data items of same type
Chapter 6 Arrays.
Chapter 6 Arrays Solution Opening Problem
Introducing Arrays Array is a data structure that represents a collection of the same types of data.
Chapter 10 Lists.
METHODS (FUNCTIONS) By: Lohani Adeeb khan.
Chapter 6 Arrays Fall 2012 CS2302: Programming Principles.
Chapter 5 Arrays Introducing Arrays
Object Oriented Programming in java
Chapter 7 Single-Dimensional Arrays
Chapter 7 Single-Dimensional Arrays
Chapter 7 Single-Dimensional Arrays and C-Strings
Chapter 6 Arrays.
Single-Dimensional Arrays chapter6
Single-Dimensional Arrays
Chapter 6 Arrays.
Chapter 23 Searching and Sorting
Chapter 6 Arrays.
Chapter 5 Arrays.
Chapter 7 Single-Dimensional Arrays
Chapter 7 Single-Dimensional Arrays
Presentation transcript:

Chapter 6 Arrays

Objectives To describe why arrays are necessary in programming (§6.1). To declare array reference variables and create arrays (§§6.2.1-6.2.2). To initialize the values in an array (§6.2.3). To access array elements using indexed variables (§6.2.4). To declare, create, and initialize an array using an array initializer (§6.2.5). To program common array operations (displaying arrays, summing all elements, finding min and max elements, random shuffling, shifting elements) (§6.2.6). To simplify programming using the for-each loops (§6.2.7). To apply arrays in the LottoNumbers and DeckOfCards problems (§§6.3-6.4). To copy contents from one array to another (§6.5). To develop and invoke methods with array arguments and return value (§6.6–6.7). To define a method with variable-length argument list (§6.8). To search elements using the linear (§6.9.1) or binary (§6.9.2) search algorithm. To sort an array using the selection sort (§6.10.1) To sort an array using the insertion sort algorithm (§6.10.2). To use the methods in the Arrays class (§6.11).

Opening Problem Read one ten numbers, compute their average, and find out how many numbers are above the average. How would you compute this problem? An efficient and organized manner is to use data structure, the array, which stores a fixed sequential collection of elements of the same type. By store all 10 numbers into an array and access them through single array variable.

Run with prepared input Solution public class AnalyzeNumbers { public static void main(String[] args) { final int NUMBER_OF_ELEMENTS = 10; double[] numbers = new double[NUMBER_OF_ELEMENTS]; // Creates & Declare a array of 10 elements double sum = 0; java.util.Scanner input = new java.util.Scanner(System.in); for (int i = 0; i < NUMBER_OF_ELEMENTS; i++) { System.out.print("Enter a new number: "); numbers[i] = input.nextDouble(); // store numbers into the array sum += numbers[i]; //add each number to sum } double average = sum / NUMBER_OF_ELEMENTS; //obtain the average int count = 0; // The number of elements above average for (int i = 0; i < NUMBER_OF_ELEMENTS; i++) // compares each number in the array if (numbers[i] > average) // compares each number in the array count++; System.out.println("Average is " + average); System.out.println("Number of elements above the average " + count); } } Run with prepared input

Introducing Arrays Array is a data structure that represents a collection of the same types of data.

Declaring Array Variables To use an array in a program, you must declare a variable to reference that array and specify the array’s element type. datatype[] arrayRefVar; Example for declaring an array variable: double[] myList; datatype arrayRefVar[]; // This style is allowed, but not preferred Example: double myList[];

Creating Arrays The declaration of an array variables does not allocate any space in memory for the array, it creates a storage location for the reference to an array. arrayRefVar = new datatype[arraySize]; Example: myList = new double[10]; myList[0] //references the first element in the array. myList[9] //references the last element in the array. Note: if a variable does not contain references to an array, then the value of the variables is null

Declaring and Creating in One Step datatype[]arrayRefVar = new datatype[arraySize]; double[] myList = new double[10]; //declare array name myList as double datatype arrayRefVar[] = new datatype[arraySize];//create and create Arrays double myList[] = new double[10]; //declare and create array called myList[]

The Length of an Array For example, Once an array is created, its size is fixed. It cannot be changed. You can find its size using arrayRefVar.length For example, myList.length returns 10

Array size & Default Values When the space of an array allocated, the array size must be defined the number of elements that can be stored in it. When an array is created, its elements are assigned the default value of 0 for the numeric primitive data types, '\u0000' for char types, and false for boolean types.

Each value has a numeric index Arrays An array is an ordered list of values: scores The entire array has a single name Each value has a numeric index 0 1 2 3 4 5 6 7 8 9 79 87 94 82 67 98 87 81 74 91 An array of size N is indexed from zero to N-1 This array holds 10 values that are indexed from 0 to 9 Copyright © 2012 Pearson Education, Inc.

Arrays A particular value in an array is referenced using the array name followed by the index in brackets For example, the expression scores[2] refers to the value 94 (the 3rd value in the array) That expression represents a place to store a single integer and can be used wherever an integer variable can be used Copyright © 2012 Pearson Education, Inc.

Arrays For example, an array element can be assigned a value, printed, or used in a calculation: scores[2] = 89; scores[first] = scores[first] + 2; mean = (scores[0] + scores[1])/2; System.out.println ("Top = " + scores[5]); pick = scores[rand.nextInt(11)]; Copyright © 2012 Pearson Education, Inc.

Arrays The values held in an array are called array elements An array stores multiple values of the same type – the element type The element type can be a primitive type or an object reference Therefore, we can create an array of integers, an array of characters, an array of String objects, an array of Coin objects, etc. Copyright © 2012 Pearson Education, Inc.

Arrays In Java, the array itself is an object that must be instantiated Another way to depict the scores array: scores 79 87 94 82 67 98 81 74 91 The name of the array is an object reference variable Copyright © 2012 Pearson Education, Inc.

Indexed Variables The array elements are accessed through the index. The array indices are 0-based, i.e., it starts from 0 to arrayRefVar.length-1. In the example in Figure 6.1, myList holds ten double values and the indices are from 0 to 9. Each element in the array is represented using the following syntax, known as an indexed variable: arrayRefVar[index]; myList[9] represents the last element in the array myList.

Using Indexed Variables After an array is created, an indexed variable can be used in the same way as a regular variable. For example, the following code adds the value in myList[0] and myList[1] to myList[2]. myList[2] = myList[0] + myList[1]; Loop assigns 0 to myList[0], 1 to myList[1],… and 9 to myList[9] For (int i=0; i< myList.lenght; i++) { myList[i] = 1; }

Array Initializers This shorthand syntax must be in one statement. double[] myList; //declare myList = new double[4]; //create Declaring, creating, initializing in one step: double[] myList = {1.9, 2.9, 3.4, 3.5}; This shorthand syntax must be in one statement.

Declaring, creating, initializing Using the Shorthand Notation double[] myList = {1.9, 2.9, 3.4, 3.5}; This shorthand notation is equivalent to the following statements: double[] myList = new double[4]; myList[0] = 1.9; myList[1] = 2.9; myList[2] = 3.4; myList[3] = 3.5;

CAUTION Using the shorthand notation, you have to declare, create, and initialize the array all in one statement. Splitting it would cause a syntax error. For example, the following is wrong: double[] myList; myList = {1.9, 2.9, 3.4, 3.5};

//read 10 numbers; //computer their average; // find out how many numbers are above the average. public class AnalyzeNumbers { public static void main(String[] args) { final int NUMBER_OF_ELEMENTS = 10; double[] numbers = new double[NUMBER_OF_ELEMENTS]; // this line creates an array of 10 elements double sum = 0; java.util.Scanner input = new java.util.Scanner(System.in); for (int i = 0; i < NUMBER_OF_ELEMENTS; i++) { System.out.print("Enter a new number: "); numbers[i] = input.nextDouble(); //store numbers into the array sum += numbers[i]; // add each number to sum } double average = sum / NUMBER_OF_ELEMENTS; // obtain the average int count = 0; // The number of elements above average for (int i = 0; i < NUMBER_OF_ELEMENTS; i++) // then compares each number in the array with average if (numbers[i] > average) // to count the number if values above the average count++; System.out.println("Average is " + average); System.out.println("Number of elements above the average " + count); } }

Trace Program with Arrays animation Trace Program with Arrays Declare array variable values, create an array, and assign its reference to values public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i= 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays i becomes 1 public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays i (=1) is less than 5 public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After this line is executed, value[1] is 1 public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After i++, i becomes 2 public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays i (= 2) is less than 5 public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After this line is executed, values[2] is 3 (2 + 1) public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After this, i becomes 3. public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays i (=3) is still less than 5. public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After this line, values[3] becomes 6 (3 + 3) public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After this, i becomes 4 public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays i (=4) is still less than 5 public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After this, values[4] becomes 10 (4 + 6) public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After i++, i becomes 5 public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays i ( =5) < 5 is false. Exit the loop public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Trace Program with Arrays animation Trace Program with Arrays After this line, values[0] is 11 (1 + 10) public class Test { public static void main(String[] args) { int[] values = new int[5]; for (int i = 1; i < 5; i++) { values[i] = i + values[i-1]; } values[0] = values[1] + values[4];

Processing Arrays See the examples in the text. (Initializing arrays with input values) (Initializing arrays with random values) (Printing arrays) (Summing all elements) (Finding the largest element) (Finding the smallest index of the largest element) (Random shuffling) (Shifting elements)

Initializing arrays with input values Java has a shorthand notation, known as the array initializer, which combines in one statement declaring an array. elementType[] arrayRefVar = [value0,value1, …, valuek}; For example: double [] myList = {1.9, 2.9, 3.4, 3.5}; The statement below declares, creates, and initializing the array myList with four elements: double[] myList = new double[4]; myList[0] = 1.9; myList[1] = 2.9; myList[2] = 3.4; myList[3] = 3.5;

Printing arrays for (int i = 0; i < myList.length; i++) { Display arrays, you need to print each element in the array using a loop like following: for (int i = 0; i < myList.length; i++) { System.out.print(myList[i] + " "); } For string: char[] city = {‘D’, ‘a’, ‘l’, ‘l’, ‘a’, ‘s’}; System.out.println(city);

Summing all elements double total = 0; By using a variable named total to store the sum, initially total is 0. add each element in the array to total using a loop like below: double total = 0; for (int i = 0; i < myList.length; i++) { total += myList[i]; }

Finding the largest element Use a variable named max to store the largest element. Initially max is myList[0]. To find the largest element in the array myList, compare each element with max, and update max if the element is greater than max double max = myList[0]; for (int i = 1; i < myList.length; i++) { if (myList[i] > max) max = myList[i]; }

Random shuffling In many applicaition, you need to randomly reorder the elements in an array. This is called a shuffling. Therefore, for each element myList[i], randomly generate an index j and swap myList[i] as follow: Random Shuffling Video 5:47

Shifting Elements Sometimes you need to shift the elements left or right. Example to shift the elements one position to the left and fill the last element with first element:

Enhanced for Loop (for-each loop) JDK 1.5 introduced a new for loop that enables you to traverse the complete array sequentially without using an index variable. For example, the following code displays all elements in the array myList:   for (double value: myList) System.out.println(value);  In general, the syntax is   for (elementType value: arrayRefVar) { // Process the value } Note: You still have to use an index variable if you wish to traverse the array in a different order or change the elements in the array. for (int i = 0; i < list.length; i++) System.out.print(list[i] + “ “);

Enhanced For Loop class EnhancedForTest{ 4 public static void main(String[] args) 5 { 6 int[] arrayList = {1, 12, 3, 4, 15, 6, 67}; 8 int total = 0; 9 10 // add each element's value to total 11 for (int number : arrayList ) 12 total += number; 13 //line List 11 & 12 equivalent to the following counter controlled repetition used in // line 14 & 15 14 //for (int counter =0; counter <arrayList.length; counter++) 15 // total += array[counter]; 16 17 System.out.printf("Total of array elements: %d\n" , total); 18 } 19 }

Problem: Lotto Numbers Suppose you play the Pick-10 lotto. Each ticket has 10 unique numbers ranging from 1 to 99. You buy a lot of tickets. You like to have your tickets to cover all numbers from 1 to 99. Write a program that reads the ticket numbers from a file and checks whether all numbers are covered. Assume the last number in the file is 0. Lotto Numbers Sample Data LottoNumbers Run

import java.util.Scanner; public class LottoNumbers { public static void main(String args[]) { Scanner input = new Scanner(System.in); boolean[] isCovered = new boolean[99]; // default false -- create and initialize array // Read all numbers and mark corresponding element covered -- read number int number = input.nextInt(); // read the number while (number != 0) { isCovered[number - 1] = true; // mark number covered – “true” number = input.nextInt(); // read the number } // Check if all covered boolean allCovered = true; // Assume all covered for (int i = 0; i < 99; i++) if (!isCovered[i]) { allCovered = false; // Find one number is not covered “false” break; } // Display result if (allCovered) // check allCovered? System.out.println("The tickets cover all numbers"); else System.out.println("The tickets don’t cover all numbers"); } }

Problem: Deck of Cards The problem is to write a program that picks four cards randomly from a deck of 52 cards. All the cards can be represented using an array named deck, filled with initial values 0 to 52, as follows: int[] deck = new int[52]; //declared and create cards // initialize cards for (int i = 0; i < deck.length; i++) deck[i] = i; DeckOfCards Run

public class DeckOfCards { public static void main(String[] args) { int[] deck = new int[52]; String[] suits = {"Spades", "Hearts", "Clubs", "Diamonds"}; // create array deck – array of string String[] ranks = {"Ace", "2", "3", "4", "5", "6", "7", "8", "9", // array of strings "10", "Jack", "Queen", "King"}; // Initialize deck for (int i = 0; i < deck.length; i++) deck[i] = i; // Shuffle the deck for (int i = 0; i < deck.length; i++) { // Generate an index randomly int index = (int)(Math.random() * deck.length); int temp = deck[i]; deck[i] = deck[index]; deck[index] = temp; } // Display the first four cards for (int i = 0; i < 4; i++) { String suit = suits[deck[i] / 13]; // suite of card String rank = ranks[deck[i] % 13]; // rank of a card System.out.println("Card number " + deck[i] + ": " + rank + " of " + suit); } } }

Problem: Deck of Cards This problem builds a foundation for future more interesting and realistic applications: See Exercise 25.9.

Problem: Deck of Cards, cont. GUI Demo (picking four cards) DeckOfCards Run

Copying Arrays Often, in a program, you need to duplicate an array or a part of an array. In such cases you could attempt to use the assignment statement (=), as follows:   list2 = list1; Note: You can copy primitive data Type in Java, but you cannot copy one array variable to another array

Copying Arrays Three ways to copy arrays Using a loop: Use a loop to copy individual elements one by one. Use the static araycopy method in the System class. Use the clone method to copy arrays; Using a loop: int[] sourceArray = {2, 3, 1, 5, 10}; // initial array int[] targetArray = new int[sourceArray.length]; for (int i = 0; i < sourceArrays.length; i++) targetArray[i] = sourceArray[i];

Passing Arrays to Methods public static void printArray(int[] array) { for (int i = 0; i < array.length; i++) { System.out.print(array[i] + " "); } //Invoke the method int[] list = {3, 1, 2, 6, 4, 2}; //initialize array printArray(list); //Invoke the method printArray(new int[]{3, 1, 2, 6, 4, 2}); Anonymous array

Anonymous Array The statement printArray(new int[]{3, 1, 2, 6, 4, 2}); creates an array using the following syntax: new dataType[]{literal0, literal1, ..., literalk}; There is no explicit reference variable for the array. Such array is called an anonymous array.

1 public class TestPassArray { 2 /. Main method 1 public class TestPassArray { 2 /** Main method */ 3 public static void main(String[] args) { 4 int[] a = {1, 2}; 5 // Swap elements using the swap method 6 System.out.println("Before invoking swap"); 7 System.out.println("array is {" + a[0] + ", " + a[1] + "}"); 8 swap(a[0], a[1]); 9 System.out.println("After invoking swap"); 10 System.out.println("array is {" + a[0] + ", " + a[1] + "}"); 11 // Swap elements using the swapFirstTwoInArray method 12 System.out.println("Before invoking swapFirstTwoInArray"); 13 System.out.println("array is {" + a[0] + ", " + a[1] + "}"); 14 swapFirstTwoInArray(a); 15 System.out.println("After invoking swapFirstTwoInArray"); 16 System.out.println("array is {" + a[0] + ", " + a[1] + "}"); 17 } 18 /** Swap two variables */ 19 public static void swap(int n1, int n2) { 20 int temp = n1; 21 n1 = n2; 22 n2 = temp; 23 } 24 /** Swap the first two elements in the array */ 25 public static void swapFirstTwoInArray(int[] array) { 26 int temp = array[0]; 27 array[0] = array[1]; 28 array[1] = temp; 29 } 30 }

Pass By Value – Method Call Java uses pass by value to pass arguments to a method. There are important differences between passing a value of variables of primitive data types and passing arrays. For a parameter of a primitive type value, the actual value is passed. Changing the value of the local parameter inside the method does not affect the value of the variable outside the method. For a parameter of an array type, the value of the parameter contains a reference to an array; this reference is passed to the method. Any changes to the array that occur inside the method body will affect the original array that was passed as the argument.

Simple Example public class Test { public static void main(String[] args) { int x = 1; // x represents an int value int[] y = new int[10]; // y represents an array of int values   m(x, y); // Invoke m with arguments x and y System.out.println("x is " + x); System.out.println("y[0] is " + y[0]); } public static void m(int number, int[] numbers) { number = 1001; // Assign a new value to number numbers[0] = 5555; // Assign a new value to numbers[0]

Call Stack When invoking m(x, y), the values of x and y are passed to number and numbers. Since y contains the reference value to the array, numbers now contains the same reference value to the same array.

Call Stack When invoking m(x, y), the values of x and y are passed to number and numbers. Since y contains the reference value to the array, numbers now contains the same reference value to the same array.

Heap The JVM stores the array in an area of memory, called heap, which is used for dynamic memory allocation where blocks of memory are allocated and freed in an arbitrary order. Web Link on Stack and Heap

Passing Arrays as Arguments Objective: Demonstrate differences of passing primitive data type variables and array variables. TestPassArray Run

Example, cont.

Returning an Array from a Method public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list result int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1);

Trace the reverse Method animation Trace the reverse Method int[] list1 = {1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); Declare result and create array public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i = 0 and j = 5 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i (= 0) is less than 6 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i = 0 and j = 5 Assign list[0] to result[5] public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); After this, i becomes 1 and j becomes 4 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i (=1) is less than 6 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i = 1 and j = 4 Assign list[1] to result[4] public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); After this, i becomes 2 and j becomes 3 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i (=2) is still less than 6 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i = 2 and j = 3 Assign list[i] to result[j] public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); After this, i becomes 3 and j becomes 2 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i (=3) is still less than 6 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i = 3 and j = 2 Assign list[i] to result[j] public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); After this, i becomes 4 and j becomes 1 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i (=4) is still less than 6 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i = 4 and j = 1 Assign list[i] to result[j] public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 5 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); After this, i becomes 5 and j becomes 0 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 5 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i (=5) is still less than 6 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 5 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i = 5 and j = 0 Assign list[i] to result[j] public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 6 5 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); After this, i becomes 6 and j becomes -1 public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 6 5 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); i (=6) < 6 is false. So exit the loop. public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 result 6 5 4 3 2 1

Trace the reverse Method, cont. animation Trace the reverse Method, cont. int[] list1 = new int[]{1, 2, 3, 4, 5, 6}; int[] list2 = reverse(list1); Return result public static int[] reverse(int[] list) { int[] result = new int[list.length];   for (int i = 0, j = result.length - 1; i < list.length; i++, j--) { result[j] = list[i]; } return result; list 1 2 3 4 5 6 list2 result 6 5 4 3 2 1

Problem: Counting Occurrence of Each Letter Generate 100 lowercase letters randomly and assign to an array of characters. Count the occurrence of each letter in the array. CountLettersInArray Run

Searching Arrays Searching is the process of looking for a specific element in an array; for example, discovering whether a certain score is included in a list of scores. Searching is a common task in computer programming. There are many algorithms and data structures devoted to searching. In this section, two commonly used approaches are discussed, linear search and binary search.

Linear Search The linear search approach compares the key element, key, sequentially with each element in the array list. The method continues to do so until the key matches an element in the list or the list is exhausted without a match being found. If a match is made, the linear search returns the index of the element in the array that matches the key. If no match is found, the search returns -1.

Linear Search Animation Key List 3 6 4 1 9 7 3 2 8 3 6 4 1 9 7 3 2 8 3 6 4 1 9 7 3 2 8 3 6 4 1 9 7 3 2 8 3 6 4 1 9 7 3 2 8 3 6 4 1 9 7 3 2 8

From Idea to Solution Trace the method /** The method for finding a key in the list */ public static int linearSearch(int[] list, int key) { for (int i = 0; i < list.length; i++) if (key == list[i]) return i; return -1; } Trace the method int[] list = {1, 4, 4, 2, 5, -3, 6, 2}; int i = linearSearch(list, 4); //returns 1 located at[1] int j = linearSearch(list, -4); //returns -1 No match int k = linearSearch(list, -3); //returns 5 located at[5]

Binary Search For binary search to work, the elements in the array must already be ordered. Without loss of generality, assume that the array is in ascending order. e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79 The binary search first compares the key with the element in the middle of the array. Video Binary Search Simulation

Binary Search, cont. Consider the following three cases: If the key is less than the middle element, you only need to search the key in the first half of the array. If the key is equal to the middle element, the search ends with a match. If the key is greater than the middle element, you only need to search the key in the second half of the array.

animation Binary Search Key List 8 1 2 3 4 6 7 8 9 8 1 2 3 4 6 7 8 9 8 1 2 3 4 6 7 8 9

Binary Search, cont.

Binary Search, cont.

Binary Search, cont. The binarySearch method returns the index of the element in the list that matches the search key if it is contained in the list. Otherwise, it returns -insertion point - 1. The insertion point is the point at which the key would be inserted into the list.

From Idea to Solution /** Use binary search to find the key in the list */ public static int binarySearch(int[] list, int key) { int low = 0; int high = list.length - 1;   while (high >= low) { int mid = (low + high) / 2; if (key < list[mid]) high = mid - 1; else if (key == list[mid]) return mid; else low = mid + 1; } return -1 - low;

The Arrays.binarySearch Method Since binary search is frequently used in programming, Java provides several overloaded binarySearch methods for searching a key in an array of int, double, char, short, long, and float in the java.util.Arrays class. For example, the following code searches the keys in an array of numbers and an array of characters. int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79}; System.out.println("Index is " + java.util.Arrays.binarySearch(list, 11));   char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'}; java.util.Arrays.binarySearch(chars, 't')); For the binarySearch method to work, the array must be pre-sorted in increasing order. Return is 4 Return is –4 (insertion point is 3, so return is -3-1)

Sorting Arrays Sorting, like searching, is also a common task in computer programming. Many different algorithms have been developed for sorting. This section introduces two simple, intuitive sorting algorithms: selection sort and insertion sort.

Selection Sort Selection sort finds the largest number in the list and places it last. It then finds the largest number remaining and places it next to last, and so on until the list contains only a single number. Figure 6.17 shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using selection sort.

From Idea to Solution list[0] list[1] list[2] list[3] ... list[10] for (int i = 0; i < list.length; i++) { select the smallest element in list[i..listSize-1]; swap the smallest with list[i], if necessary; // list[i] is in its correct position. // The next iteration apply on list[i..listSize-1] } list[0] list[1] list[2] list[3] ... list[10] list[0] list[1] list[2] list[3] ... list[10] list[0] list[1] list[2] list[3] ... list[10] list[0] list[1] list[2] list[3] ... list[10] list[0] list[1] list[2] list[3] ... list[10] ... list[0] list[1] list[2] list[3] ... list[10]

Expand for (int i = 0; i < listSize; i++) { select the smallest element in list[i..listSize-1]; swap the smallest with list[i], if necessary; // list[i] is in its correct position. // The next iteration apply on list[i..listSize-1] } Expand double currentMin = list[i]; int currentMinIndex = i; for (int j = i; j < list.length; j++) { if (currentMin > list[j]) { currentMin = list[j]; currentMinIndex = j; }

Expand for (int i = 0; i < listSize; i++) { select the smallest element in list[i..listSize-1]; swap the smallest with list[i], if necessary; // list[i] is in its correct position. // The next iteration apply on list[i..listSize-1] } Expand double currentMin = list[i]; int currentMinIndex = i; for (int j = i; j < list.length; j++) { if (currentMin > list[j]) { currentMin = list[j]; currentMinIndex = j; }

Expand for (int i = 0; i < listSize; i++) { select the smallest element in list[i..listSize-1]; swap the smallest with list[i], if necessary; // list[i] is in its correct position. // The next iteration apply on list[i..listSize-1] } Expand if (currentMinIndex != i) { list[currentMinIndex] = list[i]; list[i] = currentMin; }

Wrap it in a Method public static void selectionSort(double[] list) { /** The method for sorting the numbers */ public static void selectionSort(double[] list) { for (int i = 0; i < list.length; i++) { // Find the minimum in the list[i..list.length-1] double currentMin = list[i]; int currentMinIndex = i; for (int j = i + 1; j < list.length; j++) { if (currentMin > list[j]) { currentMin = list[j]; currentMinIndex = j; } // Swap list[i] with list[currentMinIndex] if necessary; if (currentMinIndex != i) { list[currentMinIndex] = list[i]; list[i] = currentMin; Invoke it selectionSort(yourList)

Insertion Sort int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted The insertion sort algorithm sorts a list of values by repeatedly inserting an unsorted element into a sorted sublist until the whole list is sorted.

animation Insertion Sort int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted 2 9 5 4 8 1 6 2 9 5 4 8 1 6 2 5 9 4 8 1 6 2 4 5 9 8 1 6 2 4 5 8 9 1 6 1 2 4 5 8 9 6 1 2 4 5 6 8 9

How to Insert? The insertion sort algorithm sorts a list of values by repeatedly inserting an unsorted element into a sorted sublist until the whole list is sorted.

From Idea to Solution InsertSort for (int i = 1; 1; i < list,length; i++) { insert list[i] into a sorted sublist list[0..i-1] so that list[0..i] is sorted } list[0] list[0] list[1] list[0] list[1] list[2] list[0] list[1] list[2] list[3] list[0] list[1] list[2] list[3] ... InsertSort

The Arrays.sort Method Since sorting is frequently used in programming, Java provides several overloaded sort methods for sorting an array of int, double, char, short, long, and float in the java.util.Arrays class. For example, the following code sorts an array of numbers and an array of characters. double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5}; java.util.Arrays.sort(numbers);   char[] chars = {'a', 'A', '4', 'F', 'D', 'P'}; java.util.Arrays.sort(chars);

JVA JDK The Java Development Kit (JDK) is an implementation of either one of the Java SE, Java EE or Java ME platforms[1] released by Oracle Corporation in the form of a binary product aimed at Java developers on Solaris, Linux, Mac OS X or Windows.[2] Since the introduction of Java platform, it has been by far the most widely used Software Development Kit (SDK).[citation needed] On 17 November 2006, Sun announced that it would be released under the GNU General Public License (GPL), thus making it free software. This happened in large part on 8 May 2007, when Sun contributed the source code to the OpenJDK.[3] JDK contents The JDK has as its primary components a collection of programming tools, including: appletviewer – this tool can be used to run and debug Java applets without a web browser