Biološka vezja / Genetska vezja Vezja v elektroniki predstavljajo med seboj povezane komponente, po katerih potujejo elektroni. Logično vezje je v računalništvu povezava med logičnimi vrati, ki omogoča logične operacije s podatki – digitalnimi informacijami. V biologiji so vezja med seboj povezani biološki elementi (proteini, nukleotidna zaporedja), ki opravljajo neko funkcijo v organizmu. Najpogosteje so povezana z regulacijo izražanja genov – govorimo o regulatornih vezjih. V osnovi so biološka vezja genetska vezja.
Preprosta naravna biološka vezja Prvi natančno opisan primer genetskega vezja je laktozni operon v povezavi z diavksično rastjo: operon lac ‚se odloči‘ ali bo celica izrabljala laktozo ali ne. Izraz ‚biološko vezje‘ se najpogosteje pojavlja v biološkem inženirstvu / SB, ki temelji na načelih računalniškega inženirstva. http://amapress.gen.cam.ac.uk/wp-uploads/2012/06/Lecture-1-AMA-CDB.pdf
Forward engineering, reverse engineering Projekcijsko inženirstvo (?) – v inženirstvu običajno izhajamo iz višjih ravni abstrakcije in načrtujemo naprave na osnovi logike, neodvisno od implementacije, in gremo šele nato v izgradnjo fizičnega sistema. Obratno inženirstvo – z analizo nekega obstoječega sistema poskušamo najti njegove sestavne dele. Cilj je največkrat izdelati izboljšane sisteme ali preurejene kopije obstoječih sistemov. Model-Based User Interfaces Incubator Group (MBUI-XG) http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
Modularnost Sistemi so sestavljeni iz enostavnejših delov (modulov). Nove sisteme lahko zgradimo iz posameznih modulov, ki jih med seboj ustrezno povežemo. Ti moduli morajo biti dobro opisani. Modularnost je skupaj s karakterizacijo in standardizacijo eden od temeljev inženirstva, kar velja tudi za sintezno biologijo. Module – biološke dele – povezujemo v naprave, sisteme in/ali sintezna biološka vezja. http://2012.igem.org/Team:Peking/Project/Luminesensor/Design
Logična vezja v računalništvu Računalniki so zgrajeni iz digitalnih vezij, po katerih potujejo elektroni kot biti informacij. Bit ima lahko samo dve vrednosti, 1 ali 0, torej gre za dvojiški sistem operacij. Računalnik temelji na logičnih operacijah IN, ALI, NE (Boolovi operatorji), ki so osnova Boolove algebre. V računalništvu ustreza vrednost 0 0 V, vrednost 1 pa 5 V. Boolovi operatorji
Grafični prikaz vezij temelji na črtah (žicah) in likih (logičnih vratih). ‚Žice‘ prenašajo podatke, ‚vrata‘ jih obdelajo. Logična vrata imajo vstopne in izstopne signale. Vstopne signale logična vrata obdelajo v skladu z logično funkcijo (operatorjem), tako da je izhodni signal ustrezno spremenjen glede na vhodnega. Obstaja več alternativnih načinov grafičnega prikaza, uporabljajo pa predvsem ‚klasični‘ (ameriški) in ‚IEC‘ (Internat. Electrotech. Commission). IN ALI NE
sok IN smetana sok ALI smetana b o 1 a b o 1 a o 1 NE (nasprotno) sok IN smetana sok ALI smetana Resničnostna tabela = pravilnostna tabela: prikaz pravilnih izhodnih signalov za dane kombinacije vhodnih signalov.
a b y 1 a b y 1 a b y 1 NE-IN – vrata (NAND) 1 NE-IN – vrata (NAND) Samo če sta oba vhodna signala 1, je izhodni signal 0. a b y 1 NE-ALI – vrata (NOR) Samo če sta oba vhodna signala 0, je izhodni signal 1. http://colos1.fri.uni-lj.si/ERI/RACUNALNISTVO/RAC_SLOJI/Logicni_operatorji.html a b y 1 IZKLJUČUJOČI ALI – vrata (XOR) Samo če je en vhodni signal 1, je izhodni signal 1.
Problem ortogonalnosti v sintezni biologiji Elektronski elementi (logična vrata v vezjih) so med seboj povezani z žicami, zato prenos signalov ni moten. V bioloških sistemih pa ni ekvivalenta žic, zato signali prihajajo v stik s številnimi drugimi snovmi/signali. Ortogonalnost pomeni, da so naprave med seboj kompatibilne in da ne prihaja do neželenih interakcij z netarčnimi molekulami (vključno z nukleotidnimi zaporedji). Posredno to pomeni, da z vnosom novih naprav ne bo prišlo do oviranja delovanja siceršnjega molekularnobiološkega ustroja celice.
Nature 469, 171–172 (2011)
Models of logic gates built with prokaryotic regulatory modules Models of logic gates built with prokaryotic regulatory modules. The sketches on top of the figure symbolize the various actors that control promoter activity: RNA polymerase (RNAP) disclosed in its various subunits, transcription factors (activators and/or repressors), binding DNA sites and types of interaction. Each of the gate models are assembled by combination of TFs binding sites (operators) and RNAP binding sites (promoters). The overlapping of one operator with a promoter causes repression while operators placed upstream from the promoter causes activation. (a) The amplifier-gate is represented as a simple activation process. (b) The NOT-gate is equivalent to transcriptional repression. (c) The AND-gate can be implemented as a TF that depends on an inducer B to activate the promoter. (d) The OR-gate could be a promoter amenable to full activation by two independent TFs. (e) One NAND-gate is generated by a promoter regulated by two cooperative repressors. (f) An ANDN-gate can be created with a promoter activated by a TF and repressed by another. FEBS Lett. 582(8),1237–1244 (2008)
Sinteznobiološka vrata IN The logical AND gate.[10][11] If Signal A AND Signal B are present, then the desired gene product will result. All promoters shown are inducible, activated by the displayed gene product. Each signal activates expression of a separate gene (shown in light blue). The expressed proteins then can either form a complete complex in cytosol, that is capable of activating expression of the output (shown), or can act separately to induce expression, such as separately removing an inhibiting protein and inducing activation of the uninhibited promoter. Wikipedia: Synthetic biological circuits
Logična vrata IN na osnovi heterodimernega aktivatorja HrpRS iz bakterije Pseudomonas syringae. Promotor hrpL je odvisen od faktorja sigma 54 (ne sigma 70), kar zagotavlja bolj natančno regulacijo izražanja (manj ‚puščanja‘). Izražanje vsake od podenot aktivatorja je pod kontrolo drugačnega promotorja, ki se odziva na snovi v okolju. Kot kaže pravilnostna tabela, se reporter izraža samo, ko se intenzivno izražata tako HrpR kot HrpS. Nature Communications 2, a508 (2011): Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
Nature Communications 2, a508 (2011): Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
Za izvedbo logičnih vrat je bilo najprej treba natančno opisati različne kombinacije promotor – rbs (uporaba ločenih reporterjev), potem pa sestavljanje naprave in testiranje, kakšna je odzivnost na posamezne induktorje in na kombinacijo obeh. Nature Communications 2, a508 (2011): Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
LOGIČNA VRATA ‚NE‘ Izvedba, ki temelji na delovanju represorja cI iz faga lambda. Ta zagotavlja vztrajanje faga v lizogenem ciklu. Lewin‘s Essential Genes, 3rd ed.; Jones&Bartlet 2013
LOGIČNA VRATA ‚NE‘ Z IPTG inducirajo izražanje represorja laktoznega promotorja, ta pa zavira laktozni promotor, ki so ga uporabili za uravnavanje izražanja lambda-represorja. Ta represor nato blokira lambda-promotor (PR) in do izražanja reporterja (GFP) ne pride. Vstopni signal je + (IPTG), izstopni pa – (GFP). Nature Communications 2, a508 (2011): Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
Sledila je povezava z vrati IN, s čimer so dobili vrata NE-IN (NAND). Preizkusili so 5 različnih RBS in preverjali odziv vrat pri različnih konc. induktorja. Sledila je povezava z vrati IN, s čimer so dobili vrata NE-IN (NAND). Nature Communications 2, a508 (2011): Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
Sinteznobiološka vrata NE-IN (NAND) The logical Negated AND gate. If Signal A AND Signal B are present, then the desired gene product will NOT result. All promoters shown are inducible. The activating promoter for the output gene is constitutive, and thus not shown. The constitutive promoter for the output gene keeps it "on" and is only deactivated when (similar to the AND gate) a complex as a result of two input signal gene products blocks the expression of the output gene. Wikipedia: Synthetic biological circuits
LOGIČNA VRATA ‚NE-IN‘ model meritev Nature Communications 2, a508 (2011): Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
Sinteznobiološka vrata ALI The logical OR gate. If Signal A OR Signal B are present, then the desired gene product will result. All promoters shown are inducible. Either signal is capable of activating the expression of the output gene product, and only the action of a single promoter is required for gene expression. Post-transcriptional regulation mechanisms can prevent the presence of both inputs producing a compounded high output, such as implementing a low binding affinity ribosome binding site. Wikipedia: Synthetic biological circuits
http://openwetware.org/images/c/cf/IT-6_Introduction_to_Synthetic_Biology.pdf
Transkripcijska aktivacija s tetraciklinom Uporabljajo jo predvsem pri transgenskih miših, kjer antibiotik tetraciklin (Tet) ali njegov stabilnejši analog doksiciklin (Dox) inducira izražanje genov pod kontrolo promotorja tet. V naravi promotor tet uravnava izražanje represorja TetR in črpalke TetA, ki prenaša tetraciklin iz celice. Kot princip regulacije lahko sistem uporabljamo tudi pri prokariontih. Sistem Tet-OFF Sistem temelji na fuzijskem proteinu tetraciklinskem transaktivatorju (tTA), ki ga sestavljata TetR in aktivacijska domena proteina VP16 virusa Herpes simplex. tTA se veže na operatorska zaporedja, ki v kombinaciji z minimalnim promotorjem (npr. CMV) sestavljajo odzivni element za tetraciklin (TRE; 7x19 bp). Tetraciklin se veže na tTA, nastali kompleks pa se ne more več vezati na TRE, zato se izražanje zmanjša. Sistem Tet-ON Ta sistem temelji na istih bioloških molekulah, a deluje nasprotno: tTA se veže na TRE samo, če je na tTA vezan Dox. To je možno, ker je tTA nekoliko drugačen (rtTA) – substitucija 4 ak. http://www.genoway.com/products-services/technologies/tet-system.htm
http://www.tetsystems.com/science-technology/scientific-figures/#c22
Regulacija operona lux Pri Vibrio fischeri je operon lux odgovoren za sintezo bioluminiscenčnega proteina in se samostojno uravnava. Regulacija poteka preko prisotnosti/odsotnosti acilhomoserinlaktona (AHL), ključni proteinski regulator pa je transkripcijski aktivator LuxR. LuxR se izraža konstitutivno in ima vezavno mesto za AHL. V prisotnosti AHL (vsaj 10 nM) preko promotorja pLuxR (desni promotor) stimulira transkripcijo LuxI, to je AHL-sintaza, ki pretvarja S-adenozilmetionin (SAM) v AHL. Tako nastane pozitivna povratna zanka, vzporedno z LucI pa se poveča tudi sinteza luciferaze. Pri zelo visoki koncentraciji AHL deluje LuxR kot represor. AHL pri nizkih koncentracijah deluje kot avtoinduktor, ker pa ga celice tudi izločajo, deluje kot signalna molekula za zaznavanje celične gostote (quorum sensing). https://www.bio.cmu.edu/courses/03441/TermPapers/97TermPapers/lux/communication.html
SAM…S-adenozilmetionin ACP…acilprenašalni protein CRP… receptorski protein za cAMP AHL… acetilhomoserinlakton Quorum-sensing model in P. fischeri. At low cell densities, transcription of the luxICDABE operon occurs at basal levels. LuxI encodes the AHL synthase, which synthesizes 3-oxo-C6-HSL from acyl-ACP and SAM substrates. High cell densities lead to the accumulation of AHLs, which bind and activate the LuxR transcriptional activator. LuxR binds to an inverted repeat referred to as the lux box, which is centered at −42.5 from the transcriptional start site, and makes contact with the RNA polymerase to stimulate the expression of the luxICDABE genes. Expression of the luxR gene is regulated by several factors such as heat shock, catabolite repression, and even LuxR itself (only at very high cell densities). Microbiol. Mol. Biol. Rev. December 2003 vol. 67 no. 4 574-592
http://parts.igem.org/File:Luxrreceiverschematic.png