Impact of isolated germline JAK2V617I mutation on human hematopoiesis

Slides:



Advertisements
Similar presentations
Volume 13, Issue 4, Pages (April 2008)
Advertisements

Critical Roles of Lysosomal Acid Lipase in Myelopoiesis
by Ayten Kandilci, and Gerard C. Grosveld
by Jad I. Belle, David Langlais, Jessica C
Involvement of suppressors of cytokine signaling in toll-like receptor–mediated block of dendritic cell differentiation by Holger Bartz, Nicole M. Avalos,
MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome by Lital Shaham, Elena Vendramini, Yubin Ge, Yaron Goren, Yehudit Birger,
Identification of key regulatory pathways of myeloid differentiation using an mESC-based karyotypically normal cell model by Dong Li, Hong Yang, Hong Nan,
Retroviral-Mediated Gene Transduction of c-kit Into Single Hematopoietic Progenitor Cells From Cord Blood Enhances Erythroid Colony Formation and Decreases.
Protein kinase B (PKB/c-akt) regulates homing of hematopoietic progenitors through modulation of their adhesive and migratory properties by Miranda Buitenhuis,
Human C/EBP-ϵ activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation by Richa Bedi, Jian Du, Arun K.
A novel SHP-1/Grb2–dependent mechanism of negative regulation of cytokine-receptor signaling: contribution of SHP-1 C-terminal tyrosines in cytokine signaling.
Requirement of c-Myb for p210BCR/ABL-dependent transformation of hematopoietic progenitors and leukemogenesis by Maria Rosa Lidonnici, Francesca Corradini,
by Shawn W. Cochrane, Ying Zhao, Robert S. Welner, and Xiao-Hong Sun
Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8)‏
Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines.
Continuous in vivo infusion of interferon-gamma (IFN-γ) enhances engraftment of syngeneic wild-type cells in Fanca–/– and Fancg–/– mice by Yue Si, Samantha.
The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity by Chloe James, Frederic.
by Fan Dong, and Andrew C. Larner
Megakaryocyte Growth and Development Factor-Induced Proliferation and Differentiation Are Regulated by the Mitogen-Activated Protein Kinase Pathway in.
A novel role for STAT1 in regulating murine erythropoiesis: deletion of STAT1 results in overall reduction of erythroid progenitors and alters their distribution.
Emergence of muscle and neural hematopoiesis in humans
Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34+ cells by Christian P. Kalberer, Uwe Siegler, and Aleksandra Wodnar-Filipowicz.
Lyn Physically Associates With the Erythropoietin Receptor and May Play a Role in Activation of the Stat5 Pathway by Hiroshi Chin, Ayako Arai, Hiroshi.
by Silke Huber, Reinhard Hoffmann, Femke Muskens, and David Voehringer
Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E)‏ by Grzegorz Terszowski, Claudia Waskow, Peter.
Graft-versus-Host Disease Causes Broad Suppression of Hematopoietic Primitive Cells and Blocks Megakaryocyte Differentiation in a Murine Model  Yan Lin,
Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis by Ronan Chaligné, Chloé James, Carole Tonetti, Rodolphe Besancenot,
Differential influence of tyrosine residues of the common receptor β subunit on multiple signals induced by human GM-CSF  Tohru Itoh, PhD, Rui Liu, MSc,
Novel function for interleukin-7 in dendritic cell development
Essential role for the BH3-only protein Bim but redundant roles for Bax, Bcl-2, and Bcl-w in the control of granulocyte survival by Andreas Villunger,
The tyrosine phosphatase SHP-1 dampens murine Th17 development
Volume 3, Issue 6, Pages (June 2013)
Interleukin-21 is a growth and survival factor for human myeloma cells
Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations by Oliver Tunstall-Pedoe, Anindita.
Hyaluronate-Enhanced Hematopoiesis: Two Different Receptors Trigger the Release of Interleukin-1β and Interleukin-6 From Bone Marrow Macrophages by Sophia.
Volume 17, Issue 2, Pages (February 2013)
The Anemic Friend Virus gp55 Envelope Protein Induces Erythroid Differentiation in Fetal Liver Colony-Forming Units-Erythroid by Stefan N. Constantinescu,
Hematopoietic stimulation by a dipeptidyl peptidase inhibitor reveals a novel regulatory mechanism and therapeutic treatment for blood cell deficiencies.
Elucidation of the EP defect in Diamond-Blackfan anemia by characterization and prospective isolation of human EPs by Deena Iskander, Bethan Psaila, Gareth.
by Xingwei Sui, Sanford B. Krantz, Min You, and Zhizhuang Zhao
Pak2 regulates myeloid-derived suppressor cell development in mice
by Suzanne M. Vercauteren, and Heather J. Sutherland
Cited2 Is an Essential Regulator of Adult Hematopoietic Stem Cells
Lentiviral-mediated RNAi inhibition of Sbds in murine hematopoietic progenitors impairs their hematopoietic potential by Amy S. Rawls, Alyssa D. Gregory,
Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors by Caroline.
Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms by Jelena D. Milosevic Feenstra, Harini.
Volume 7, Issue 2, Pages (February 2001)
Volume 10, Issue 6, Pages (June 2018)
Cytotoxic CD8+ T Cells Stimulate Hematopoietic Progenitors by Promoting Cytokine Release from Bone Marrow Mesenchymal Stromal Cells  Christian M. Schürch,
MiR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53 by Francisco Navarro, David Gutman, Eti Meire, Mario Cáceres,
Aging Impairs Long-Term Hematopoietic Regeneration after Autologous Stem Cell Transplantation  Carolien M. Woolthuis, Niccoló Mariani, Rikst Nynke Verkaik-Schakel,
Volume 33, Issue 4, Pages (October 2010)
Hematopoiesis: A Human Perspective
Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells by Xiaoli Wang, Cing Siang Hu, Bruce Petersen, Jiajing.
SHIP is required for a functional hematopoietic stem cell niche
Volume 12, Issue 5, Pages (November 2003)
Volume 9, Issue 1, Pages 5-11 (July 2017)
Volume 33, Issue 4, Pages (October 2010)
Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells by Xi Jin, Tingting Qin, Meiling Zhao, Nathanael.
Volume 17, Issue 4, Pages (October 2002)
Volume 14, Issue 2, Pages (February 2001)
Twist1 regulates embryonic hematopoietic differentiation through binding to Myb and Gata2 promoter regions by Kasem Kulkeaw, Tomoko Inoue, Tadafumi Iino,
STAT3 Is Required for Flt3L-Dependent Dendritic Cell Differentiation
Human hematopoietic stem cell maintenance and myeloid cell development in next-generation humanized mouse models by Trisha R. Sippel, Stefan Radtke, Tayla.
by Yue Wei, Hong Zheng, Naran Bao, Shan Jiang, Carlos E
Volume 2, Issue 3, Pages (March 2008)
Reduced numbers and self-renewal of HPCs in the absence of geminin.
JAK3A572V mutation causes constitutive JAK3 activity and IL-2–independent proliferation of NKTCL cells. JAK3A572V mutation causes constitutive JAK3 activity.
by Pamela J. Sung, Mayumi Sugita, Holly Koblish, Alexander E
Hmga2 expression augments BM cells and HSCs with enhancing extramedullary hematopoiesis in JAK2V617F-induced MPN. (A) The total nuclear cell numbers from.
Presentation transcript:

Impact of isolated germline JAK2V617I mutation on human hematopoiesis by Adam J. Mead, Onima Chowdhury, Christian Pecquet, Alexandra Dusa, Petter Woll, Deborah Atkinson, Adam Burns, Joannah Score, Michelle Rugless, Ruth Clifford, Simon Moule, Nicola Bienz, Paresh Vyas, Nick Cross, Rosemary E. Gale, Shirley Henderson, Stefan N. Constantinescu, Anna Schuh, and Sten Eirik W. Jacobsen Blood Volume 121(20):4156-4165 May 16, 2013 ©2013 by American Society of Hematology

PB and BM hematopoietic phenotype of germline JAKV617I. PB and BM hematopoietic phenotype of germline JAKV617I. (A) Quantification of Lin-CD34+, phenotypic HSCs (CD45+Lin–CD34+CD38–CD90+CD45RA–), multipotent progenitors (MPPs; CD45+Lin–CD34+CD38–CD90–CD45RA–), common myeloid progenitors (CMPs; CD45+Lin–CD34+CD38+CD123+CD45RA–), granulocyte macrophage progenitors (GMPs; CD45+Lin–CD34+CD38+CD123+CD45RA+), and megakaryocyte erythroid progenitors (MEPs; CD45+Lin–CD34+CD38+CD123–CD45RA–) in the PB of normal controls (n = 4); JAK2V617I-positive samples (n = 4); patients with JAK2V617F-positive PV (n = 3); ET (n = 3), and myelofibrosis (n = 3). (B) Quantification of phenotypic HSCs, MPPs, CMPs, GMPs, and MEPs in the BM of normal controls (n = 8) and JAK2V617I-positive samples. (C) Numbers of BFU-E, CFU-GM, and CFU-GEMM in the BM of NC (n = 8) and JAK2V617I-positive (n = 4) cases. (D) Numbers and sizes of BM CFU-Mk in NC (n = 3) versus JAK2V617I (n = 4) patients. Error bars represent SEM. P values are shown if < .05. Adam J. Mead et al. Blood 2013;121:4156-4165 ©2013 by American Society of Hematology

Long-term engraftment kinetics of germline JAK2V617I CD34+ cells after xenograft transplantation. Long-term engraftment kinetics of germline JAK2V617I CD34+ cells after xenograft transplantation. Human CD45 engraftment kinetics for age-matched NBM cases: (A) controls, n = 2 subjects; 2 recipient mice per sample and (B) JAK2V617I, n = 4, cases C1-C4; 1-3 recipient mice per samples after injection of 100 000 CD34+ cells into NOD/LtSz-scidIL2Rgnull (NSG) mice. P values in (B) represent a comparison of JAK2V617I and NBM engraftment levels at each respective time. (C) Engraftment kinetics of CD19+ B cell, CD15/33/66b+ myeloid cells, and CD34+ progenitor cells expressed as a percentage of total hCD45+ cells. (D) Quantification of HSCs, MEPs, GMPs, and CMPs in the BM at 18 weeks after transplantation. Error bars represent SEM. P values are indicated if < .1. Adam J. Mead et al. Blood 2013;121:4156-4165 ©2013 by American Society of Hematology

JAK2V617I induces only weak constitutive activation but marked cytokine hyperresponsiveness. JAK2V617I induces only weak constitutive activation but marked cytokine hyperresponsiveness. (A) A representative analysis (1/2 independent experiments with similar results) of Ba/F3 EpoR cells that were engineered to overexpress equal levels of wild-type JAK2, JAK2V617F, or JAK2V617I by bicistronic retroviral transduction and cell sorting. Cells growing in medium supplemented with IL3 (left panel) or cells that acquired autonomous growth, namely cells expressing JAK2V617F or JAK2V617I (right panel, cells are denoted “Sel.”) were starved for 5 hours without serum and cytokines and then stimulated with EPO (20 U/mL) as indicated for 15 minutes, and then lysed in 1% NP40 buffer and assessed by Western blotting for specific phosphorylation at sites that reflect activation of JAK2, STAT1, STAT3, STAT5, and Erk1/2, and for total level of JAK2, STAT3, Erk1/2, HA, and β-actin protein expression. (B) A representative analysis (1/2 independent experiments with similar results) of Ba/F3 TpoR cells that were engineered to overexpress equal levels of wild-type JAK2, JAK2V617F, or JAK2V617I by bicistronic retroviral transduction and cell sorting. Cells growing in medium supplemented with IL3 were starved for 5 hours without serum and cytokines and then stimulated with Tpo (20 ng/mL) as indicated, and then lysed after 15 minutes in 1% NP40 buffer and assessed by Western blotting for specific phosphorylation at sites that reflect activation of JAK2, STAT1, STAT3, STAT5, and Erk1/2, and for total level of JAK2, STAT3, Erk1/2, HA, and β-actin protein expression. (C-D) Results of luciferase assays in γ2A fibrosarcoma JAK2-deficient cells transfected with cDNAs coding for TpoR (C) or EpoR (D) along with wild-type JAK2, JAK2V617F, or JAK2V617I, along with STAT5 and STAT-dependent firefly luciferase and pRLTK-driven renilla luciferase (rlu), for normalization. Dual luciferase was measured 24 hours after transfection. Results of 1 representative experiment of 3 independent experiments are shown. Data are expressed as means of triplicates, and error bars indicate SD. *P < .05, **P < .01, ***P < .001. Adam J. Mead et al. Blood 2013;121:4156-4165 ©2013 by American Society of Hematology

Cytokine response assays. Cytokine response assays. (A-B) Colony formation with rhSCF at 50 ng/mL and (A) rhG-CSF (Amgen) or (B) rhTPO, each at 100 ng/mL or 0.8 ng/mL. Results are from normal subjects (n = 6), JAK2V617I cases (n = 4), and JAK2V617F-positive MPNs (n = 6), expressed as numbers of colonies formed with 0.8 ng/mL rhG-CSF or rhTPO as a percentage of colony numbers formed with 100 ng/mL rhG-CSF or rhTPO. (C) The numbers of BFU-E generated with conditioned methylcellulose (see Methods) in the presence of rhEPO at 5 U/mL, 0.05 U/mL, or 0.005 U/mL, or in the absence of EPO. Results are expressed as a percentage relative to total numbers of BFU-Es generated at 5 U/mL for normal controls (n = 4), JAK2V617I cases (n = 4), and JAK2V717F cases (n = 7). P values are shown if < .1. Error bars represent SEM. Adam J. Mead et al. Blood 2013;121:4156-4165 ©2013 by American Society of Hematology