Potential Energy Curves

Slides:



Advertisements
Similar presentations
Chapter IV Work and Energy
Advertisements

AP C UNIT 3 WORK & ENERGY.
Potential Energy Curves
Potential Energy, Conservation of Energy
Torque, Equilibrium, and Stability
ConcepTest Clicker Questions
AP Physics C I.C Work, Energy and Power. Amazingly, energy was not incorporated into physics until more than 100 years after Newton.
Energy. Which has more energy? Explain. Work Work ( W ) - a force acting upon an object to cause a change in position and a change of energy. Units Nm.
Work, Energy, And Power m Honors Physics Lecture Notes.
Chapter 4 Work and Energy Additional Concepts For Describing Motion.
8.4 Changes in Mechanical Energy for Nonconservative Forces
A. B. C. CT1 The force acting on an object is proportional to the final speed. Incorrect Explanation: A decrease in the rate of speeding up is due to.
Ch 8 Energy Notes Concept Summary Batesville High School Physics
Potential Energy and Conservation of Energy
Potential Energy and Conservation of Energy Chapter 8 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Gravitational Potential energy Mr. Burns
Simple Harmonic Motion & Elasticity
Oscillations © 2014 Pearson Education, Inc. Periodic Motion Periodic motion is that motion in which a body moves back and forth over a fixed path, returning.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Chapter 6 Work & Energy.
Work and Energy © 2014 Pearson Education, Inc..
Kinetic Energy and Work Chapter 7 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Chapter 5 Work, Energy, and Power. Work W = F x This equation applies when the force is in the same direction as the displacement are in the same direction.
Physics for Scientists and Engineers, 6e Chapter 8 – Potential Energy.
Ch 6 Work and Energy.
Physics 201: Lecture 13, Pg 1 Lecture 13 l Goals  Introduce concepts of Kinetic and Potential energy  Develop Energy diagrams  Relate Potential energy.
Preview Objectives Definition of Work Chapter 5 Section 1 Work.
Mechanics Work and Energy Chapter 6 Work  What is “work”?  Work is done when a force moves an object some distance  The force (or a component of the.
Consider an ideal spring. Elastic Potential Energy Hooke’s Law.
Energy m m Physics 2053 Lecture Notes Energy.
Work and Power Chapter 5. Work Work is done when a force causes a displacement in the direction of the force W = Fd (force and displacement parallel)
Simple Harmonic Motion Chapter 12 Section 1. Periodic Motion A repeated motion is what describes Periodic Motion Examples:  Swinging on a playground.
Oscillations and Waves An oscillation is a repetitive motion back and forth around a central point which is usually an equilibrium position. A special.
What do you think of when
Chapter 8 Potential Energy. Potential energy is the energy associated with the configuration of a system of objects that exert forces on each other This.
Potential Energy ~March 1, 2006.
Work and Energy Work The work done by a constant force is defined as the product of the component of the force in the direction of the displacement and.
Physics. Session Work, Power and Energy - 3 Session Objectives.
Introduction to Simple Harmonic Motion Unit 12, Presentation 1.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: More gravitational potential energy Potential energy of a spring Work-kinetic.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Definition of Work Chapter 5 Section 1 Work.
Lecture 11: Potential Energy & Energy Conservation.
Chapter 7 Energy of a System.
Chapter 8 Potential Energy and Conservation of Energy In this chapter we will introduce the following concepts: Potential energy Conservative and nonconservative.
© Houghton Mifflin Harcourt Publishing Company Chapter 5 Definition of Work Work is done on an object when a force causes a displacement of the object.
Lecture 12: Elastic Potential Energy & Energy Conservation.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Definition of Work Chapter 5 Section 1 Work.
Chapter 8 Potential Enegy. Introduction Potential Energy- Energy associated with the configuration of a system of objects that exert forces on each other.
Work and Energy. Scalar (Dot) Product When two vectors are multiplied together a scalar is the result:
Work and Energy Physics 1. The Purpose of a Force  The application of a force on an object is done with the goal of changing the motion of the object.
Work and Energy Work Kinetic Energy Work – Energy Theorem
Work, Energy and Power Ms Houts AP Physics C Chapters 7 & 8.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 8 Physics, 4 th Edition James S. Walker.
SO FAR WE HAVE DEALT WITH TWO KINDS OF POTENTIAL ENERGY: GRAVITATIONAL (U=MGH) ELASTIC (U=1/2KX 2 ) POTENTIAL ENERGY GRAPHS CAN PROVIDE INFORMATION ABOUT.
PHY 151: Lecture 7B 7.6 Potential Energy of a System 7.7 Conservative / Nonconservative Forces.
Definition of a “Conservative Force” The work done by a “conservative force” on a particle moving between two points ______________________ on the path.
Simple Harmonic Motion & Elasticity
Simple Harmonic Motion & Elasticity
Potential Energy and Conservation of Energy
Chapter 5 Section 1 Work Objectives
Chapter 5 Section 1 Work Preview Objectives Definition of Work.
Mechanics: Motion in One Dimension x dx Notes by: Ted Vittitoe
Potential Energy and Conservation of Energy
Chapter 8 Potential Energy and Conservation of Energy
Chapter 8 Potential Energy and Conservation of Energy
Kinetic Energy and Work
Presentation transcript:

Potential Energy Curves Notes and Virtual Lab Activity – AP Mechanics

Energy and Work Lab Part 2 Click on the picture below to be directed to pHet’s virtual skate-park lab. (Click “run now!” once on site.) Use the lab handout to set the parameters for each portion of this lab then use the virtual lab to investigate work and energy and answer the lab questions.

Potential Energy Curves Energy and Work We already know that We also know that work (done by a force) causes a change in energy. Consider the following… If we want to lift this bowling ball we have to apply a force and WE have to do work to it. The work we do to the ball would be called the work applied (because our applied force is acting through some distance). Fapp h As the ball moves upward the work applied is positive (increasing the potential energy) but the work done by gravity is negative (because mg is down but the motion is up). mg

Energy and Work Potential Energy Curves Fapp Wapp= +∆PE= +∆U mg h Let us assume that the ball was raised at a constant speed (a=0). We know then that the magnitudes of Fapp and mg are equal. In raising the ball the work applied is Wapp= Fapph = mgh. This work (Wapp= mgh) increased the potential energy so we write: Fapp Wapp= +∆PE= +∆U mg h

Potential Energy Curves Energy and Work Potential Energy Curves Let us assume that the ball was raised at a constant speed (a=0). We know then that the magnitudes of Fapp and mg are equal. In raising the ball the work done by gravity is Wg= -Fgh = -mgh. Notice that the value (no sign included) is the same as the work applied. This work (Wg= -mgh) is opposing the increase in the potential energy so we write: Fapp Wg= -∆PE= -∆U mg h

Energy and Work Potential Energy Curves Fapp +Wg= -∆PE= -∆U mg Let us look at this in another way. What happens when we let go of the ball? Surprise! The ball falls. As it falls gravity does POSITIVE work on the ball and the potential energy DECREASES. Fapp +Wg= -∆PE= -∆U mg The FIELD will ALWAYS WORK to REDUCE the POTENTIAL ENERGY! h

Potential Energy Curves Energy and Work Potential Energy Curves So now we know… Or focus is with a gravitational field, but this is true for any type of f ield OR restoring force. +Wfield= -∆PE= -∆U You have to STOP and THINK about the relationship between the signs of W and ∆U! If the force is causing an increase in the potential energy then both W and ∆U are positive. If the force is causing a decrease in the potential energy then ∆U will be negative.

Potential Energy Curves Energy and Work Potential Energy Curves If potential energy is the (negative) antiderivative of force (with respect to displacement) then how would we find the force if we were given a potential energy function? Just go the opposite way…. …the reverse process of the antiderivative is the derivative.

Potential Energy Curves Energy and Work Potential Energy Curves The area of a Force vs Position graph gives the work done by that force. The opposite of the area of a force vs position graph give the change in potential energy. The opposite of the slope of a potential energy vs position graph gives the force acting on that particle.

Potential Energy Curves Energy and Work Potential Energy Curves Potential Energy Curves graphically represent how the potential energy of a moving particle changes with its position. Three “Flavors” Stable Equilibrium Unstable Equilibrium Neutral Equilibrium Equilibrium  occurs when the net force acting on an object is zero, resulting in zero acceleration (Fnet = ma = 0). Considering what we just learned, that means for a graph of potential energy vs position (known as a potential energy curve), we want to look for to identify points of equilibrium.

Energy and Work U E x Total Energy Potential Energy Curves Stable Equilibrium – think back to the pHet Skater Lab. Due to the starting position of the skater, there was a certain total amount of energy available to the system. E Total Energy U As the skater moved, her potential energy increased and decreased. x

Potential Energy Curves Energy and Work Potential Energy Curves Stable Equilibrium – occurs when a SMALL displacement in the particle results in a restoring force that accelerates the particle back to the origin (its equilibrium position). Visualize the skater – a small displacement to the left (-x) would result in a restoring force which is positive (to the right). This would return her to the origin. E Total Energy U F(x) = -dU/dx = -slope Because the slope is negative, the force is positive. x When the skater is at x=0 the slope is zero; this represents an equilibrium point (which happens to be stable). F(x) = -dU/dx = 0

Energy and Work U E x Total Energy Potential Energy Curves Unstable Equilibrium – occurs when a SMALL displacement in the particle results in a restoring force that accelerates the particle AWAY FROM the origin (its equilibrium position). Visualize the skater –if he stands atop a ramp that is concave down and he is displaced to the left, he will not return to his starting position. E Total Energy U x If he was displaced (off of either side) his potential energy would decrease. He does, however, have energy due to his position

Potential Energy Curves Energy and Work Potential Energy Curves Unstable Equilibrium – occurs when a SMALL displacement in the particle results in a restoring force that accelerates the particle AWAY FROM the origin (its equilibrium position). Visualize the skater – a small displacement to the left (-x) would result in a force which is negative (to the left). This would accelerate him away from the origin. E Total Energy U F(x) = -dU/dx = -slope Because the slope is positive, the force is negative. x When the skater is at x=0 the slope is zero; this represents an equilibrium point (which happens to be unstable). F(x) = -dU/dx = 0

Energy and Work U E x Total Energy Potential Energy Curves Neutral Equilibrium – occurs when a SMALL displacement in the particle results in no net force and the particle remains at rest. U Visualize the skater –if he stands atop a ramp that has a flat portion and he is displaced (by a small amount) to the left or right, he won’t accelerate away. E Total Energy x U=0 If he was displaced (slightly) to either side, he wouldn’t go anywhere. He does, however, have energy due to his position.

Energy and Work U E x Total Energy Potential Energy Curves Neutral Equilibrium – occurs when a SMALL displacement in the particle results in no net force and the particle remains at rest. U E Total Energy x F(x) = -dU/dx = 0 If he was displaced (slightly) to either side, he wouldn’t go anywhere. F = -slope = zero = equilibrium!

Potential Energy Curves Energy and Work Last thing…I promise. E Consider a simple stable equilibrium situation (a skater skating back and forth in a “bowl” or a spring oscillating back and forth). Total Energy U There is a total amount of energy in the system (due to initial conditions). The kinetic energy can be found by applying the conservation of (mechanical) energy: E = U + KE x

Potential Energy Curves Energy and Work Last thing…I promise. E Total Energy U KE As the potential energy increases, the kinetic energy decreases. As the potential energy decreases the kinetic energy increases. The total energy, however, is always the same. The kinetic energy can be found by applying the conservation of (mechanical) energy: E = U + KE x

Potential Energy Curves Energy and Work In you lab packet complete part 3 (Interpreting Potential Energy Curves). Each individual student is responsible for the content of this PowerPoint. Revisit this PowerPoint as needed to reinforce the concepts discusses. Each lab group is responsible for completing the lab portion of this activity and submitting one write up per group.