of Neutrons produced by

Slides:



Advertisements
Similar presentations
Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Advertisements

Simulation of Neutrino Factory beam and quasielastic scattering off electrons in the near detector Yordan Karadzhov University of Sofia “St. Kliment Ohridski”
Plastic Scintillator Option for DB a simulation study by Maxim Gonchar, Yury Gornushkin and Dmitry Naumov JINR, Dubna, Russia Collaboration Meeting January.
Double Chooz: Outer Veto
Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
Introduction This project used cosmic rays to test a prototype Minimum Bias Trigger Scintillator (MBTS) that will be used in the ATLAS experiment at CERN.
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
Robert Cooper L. Garrison, L. Rebenitsch, R. Tayloe, R. Thornton.
M. Carson, University of Sheffield IDM 2004, University of Edinburgh Veto performance for a large xenon detector.
Neutron energy spectrum from U and Th traces in the Modane rock simulated with SOURCES (full line). The fission contribution is also shown (dashed line).
Cosmic Induced Backgrounds D. Reyna Argonne National Lab.
Counting Cosmic Rays through the passage of matter By Edwin Antillon.
Measurements of the neutron background from rock at Boulby mine Eirini Tziaferi University of Sheffield, UK JRA1 meeting, ILIAS, Paris, 14/02/2006.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
1 A Search for Massive Magnetic Monopoles at the Baksan Underground Scintillation Telescope A Search for Massive Magnetic Monopoles at the Baksan Underground.
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Recent status of dark matter search with ULE-HPGe detector Tsinghua University Qian Yue nd Korea-China Joint Seminar on Dark Matter Search.
Normalisation modelling sources Geant4 tutorial Paris, 4-8 June 2007 Giovanni Santin ESA / ESTEC Rhea System SA.
Preliminary MC study on the GRAND prototype scintillator array Feng Zhaoyang Institute of High Energy Physics, CAS, China GRAND Workshop, Paris, Feb. 015.
SNS neutron background measurements using a portable 3 He LPSD detector.
1 Cosmic Rate Overview Rustem DZHELYADIN (CERN&IHEP, Protvino) The Set-up: Scintillating counters HV setting Coincidence adjustment Accidentals.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Measurement of lifetime for muons captured inside nuclei
IDS120j WITH GAPS SC#3 AZIMUTHAL DPD DISTRIBUTION ANALYSIS WITH MAX GAPS SC#3, SC#4 AZIMUTHAL DPD DISTRIBUTION ANALYSIS, DP AND SC TOTAL DP WITH VARYING.
Design Optimization of Toroidal Fusion Shield  Fusion Theory [BLAHBLAHBLAH] Fusion energy production is based on the collision nuclei in a deuterium and.
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
1 Nuclear Activation Techniques to measure the energy distribution of laser-accelerated protons bunches T.Bonnet, M.Comet, D.Denis-petit, F. Gobet, F.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
Muon flux at Y2L and reconstruction of muon tracks
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
1 Neutron Effective Dose calculation behind Concrete Shielding of Charge Particle Accelerators with Energy up to 100 MeV V. E Aleinikov, L. G. Beskrovnaja,
IDS120j WITH AND WITHOUT RESISTIVE MAGNETS PION AND MUON STUDIES WITHIN TAPER REGION, III ( 20 cm GAPS BETWEEN CRYOSTATS ) Nicholas Souchlas, PBL (9/4/2012)
1 LTR 2004 Sudbury, December 2004 Helenia Menghetti, Marco Selvi Bologna University and INFN Large Volume Detector The Large Volume Detector (LVD)
Simultaneous photo-production measurement of the  and  mesons on the nucleons at the range 680 – 1500 MeV N.Rudnev, V.Nedorezov, A.Turinge for the GRAAL.
PoGO_G4_ ppt1 Study of optimized fast scintillator length for the astronomical hard X- ray/soft gamma-ray polarimeter PoGO November 1, 2004 Tsunefumi.
OUTGOING NEUTRONS IN CALET CALET AIMS AT DETECTING UHE CR ELECTRONS HIGH REJECTION FACTOR FOR PROTONS/NUCLEI NEEDED POSSIBLE IMPROVEMENT RESPECT ‘STANDARD’
IceTop Design: 1 David Seckel – 3/11/2002 Berkeley, CA IceTop Overview David Seckel IceTop Group University of Delaware.
1 Work report ( ) Haoqi Lu IHEP Neutrino group
Nuclear Pasta ? C.O.Dorso (UBA, Universidad de Buenos Aires) in collaboration with P. Gimenez Molinelli (UBA) P.Alcain (UBA) J. Nichols (UBA) & J. Lopez(UTEP)
Neutron Analysis PNPI, July 2009 n/g discrimination analysis
Fast neutron flux measurement in CJPL
Reactor As Neutrino Source
On behalf of TEXONO collaboration
Performance of flexible tower with horizontal extent
INTEGRAL Satellite on Oct 28th 2003
Simulation for DayaBay Detectors
Systematic uncertainties in MonteCarlo simulations of the atmospheric muon flux in the 5-lines ANTARES detector VLVnT08 - Toulon April 2008 Annarita.
Neutron and 9Li Background Calculations
Muon and Neutron detector of KIMS experiment
Very preliminary study of the random background for the BiPo detector (PhoSwich configuration) Work done by Jonathan Ferracci.
Neutron backgrounds in KamLAND
Very high efficiency, about 4 times
TO LOW ENERGY NEUTRONS AND TO LOW ENERGY NEUTRONS AND
(on behalf of the RENO collaboration)
Conceptual design of TOF and beam test results
Neutron Detection with MoNA LISA
BACKGROUND STUDY IN CRESST
Anti-Neutrino Simulations
Efficiency Study of Prototype Scintillator for INGRID
gp g K+L Cross section measurement
Davide Franco for the Borexino Collaboration Milano University & INFN
Update on POLA-01 measurements in Catania
Presentation transcript:

of Neutrons produced by The Energy Spectrum of Neutrons produced by Cosmic Ray Muons in LVD.

Детектор большого объема Гран Сассо, Италия Длина 22.7 м Ширина 13.2 м Высота 10 м Масса железа 1020 т Объем сцинтиллятора 1260 м3 Масса сцинтиллятора 1008 т Число сцинт. счетчиков 840 Число PMTs (ФЭУ) 2520 Глубина 3300 м.в.э. Средняя энергия мюонов 280 ГэВ

Assumptions: The pulses at energy > 10 MeV in the temporal range 0 – 0.25 s after t-muon in counters of d-volume are the neutron energy releases. These pulses are produced by a single neutron (in correspondence with data on neutron yield from muons a probability for 2 neutrons is 3%). The neutrons come out from t-column and pass through d-volume are isotropic in 2. Horizontal gaps between the d-volume counters weekly change the efficiency of a fast neutron detection. The role of Fe at determination of the spectrum and the flux of fast neutrons is insignificant.

Geometry L=7 L=6 L=5 L=4 L=3 L=2 L=1 1 2 3 4 5 6 7 8 9 10 d-volume Target column Geometry Вид сверху C=1 C=2 C=3 C=4 C=5 L=7 L=6 L=5 L=4 L=3 L=2 L=1 1 2 3 4 5 6 7 8 9 10 Вид сбоку Veto-system

T- criterea L=7 L=6 D- criterea L=5 L=4 L=3 L=2 L=1 Selection of vertical muons crossing target column а) E50 MeV in counters of L=1 and L=7; b) E>50 MeV L=3 & 4 or L=4 & 5 or L=3 & 5; c) Amount of triggering counters with E50MeV Ntr 5 C=1 C=2 C=3 C=4 C=5 L=7 L=6 L=5 L=4 L=3 L=2 L=1 1 2 3 4 5 6 7 8 9 10 D- criterea Selection of neutron events а) Amount of counters in d–volume N4 b)  Ei350MeV in counters of d-volume c) Should be no events with E>100 MeV in counters on the same vertical – to exclude parallel muon crossing d-volume а) in veto counters should be no events with E>100 MeV;

L=7 L=6 L=5 L=4 L=3 L=2 L=1 Ncount 1 2 3 4 5 6 7 8 9 10 C=1 C=2 C=3 C=4 C=5 L=7 L=6 L=5 L=4 L=3 L=2 L=1 1 2 3 4 5 6 7 8 9 10 Nn Ncount 151640 552 40ns

1 2 3 4 5 6 7 8 9 10

Distribution of neutron stoppings over half column (hc) The half column containing neutron stop is a last one from t-column where a neutron pulse appears. -a transmittance of the LVD matter for fast neutrons, =0.779 – best fit of the neutron stopping distribution. In such a case, at the mean neutron range in LVD matter Ln=12m*0.59=7.1 m the average neutron pass length in hc is lhc=1.8 m.

The coefficient k2 takes into account the number of operating counters in target column (~54 from 60) - the fast neutron detection efficiency

Calculations using previous formula. t s 1d 2d 3d 4d 5d 6d 1 1.7 2.7 3.7 4.4 5.4 6.4 7.1 8.1 9.1 m Calculations using previous formula.

The neutron flux at energy 20< Tn< 450MeV The neutron flux from the target column surface producing by a vertical muon in target column - the area of the neutron emitting surface of target column = 151640 – total amount of vertical muons crossing target column = 5400 – total amount of neutrons - the neutron flux from the target column surface, producing by the total flux passing t-c - average number of counters in target column - average number of counters in target column crossing by vertical muons

- the neutron flux from the target column surface, producing by the total flux of muons passing t-c G = 63 м2 sr – the geometric factor of target column for the total muon flux.

Configurations of data set (variants of choice of t-column) C=1 C=2 C=3 C=4 C=5 L=7 L=6 L=5 L=4 L=3 L=2 L=1 1 2 3 4 5 6 7 8 9 10 n Configurations of data set (variants of choice of t-column) C=1 C=2 C=3 C=4 C=5 L=7 L=6 L=5 L=4 L=3 L=2 L=1 1 2 3 4 5 6 7 8 9 10

The spectrum of the detected energy releases

The distributions of the neutron energy releases in SC at fixed Tn. Tn=20 MeV Tn=100 MeV Tn=180 MeV Tn=260 MeV Tn=60 MeV Tn=140 MeV Tn=220 MeV Tn=300 MeV The correspondence between Tn and a neutron energy En in scintillator; Black squares – MonteCarlo simulation at quenching, Red circles – without quenching, Green circles – calculations using the SHIELD code (Nikolay Sobolevskiy)

The differential energy spectrum of neutrons Фn ( Tn ) Фn , m-2 s-1 (10MeV)-1