REPORTED BY: Xela Alexis S. Ibarra III - NEWTON. Hydrostatics – it is the study of this branch of fluid mechanics. Pressure on the walls and dams, and.

Slides:



Advertisements
Similar presentations
L 13 Fluids [2]: Statics  fluids at rest
Advertisements

Fluid Mechanics Liquids and gases have the ability to flow
Chapter 12 Forces & Fluids.
Mass density ρ is the mass m divided by the volume v. ρ = m/v kg/m 3.
Chapter 3: Forces & Fluids Review. How can you change the pressure on the ground when you are standing?  Stand on one foot (decrease area)  Change into.
Forces in Fluids Ch. 11.
Liquids and Gasses Matter that “Flows”
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Unit 1 Lesson 5 Fluids and Pressure
Iceberg off Newfoundland Density,PressureAndBuoyancy.
The tendency or ability of an object to float.
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Pressure in Fluid Systems
Density and Buoyancy.
Pgs  Calculate the pressure exerted by a fluid.  Explain Pascal’s Principle.  Calculate how pressure varies with depth in a fluid.
Buoyancy, Density, and Water
PRESSURE OF A FLUID Barometer air pressure pressure = height of mercury column.
Physical Science Unit: Forces in Fluids.
Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at rest. It embraces the study of the conditions under which fluids.
Chapter 14 PHYSICS 2048C Fluids. What Is a Fluid?  A fluid, in contrast to a solid, is a substance that can flow.  Fluids conform to the boundaries.
Monday, Nov. 22, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Density and Specific Gravity 2.Fluid and Pressure 3.Absolute and Relative Pressure 4.Pascal’s.
Hydrostatics: Fluids at Rest. applying Newtonian principles to fluids hydrostatics—the study of stationary fluids in which all forces are in equilibrium.
Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas Physics Chapter 13.
Pressure; Pascal’s Principle
Liquids Liquids Pressure = Force/Area Pressure = Force/Area Pressure Liquid = Weight Density x Depth Pressure Liquid = Weight Density x Depth 1 Liter.
Reading Quiz A cube made of solid wood floats when put into water. This means that the cube weighs less than an equal volume of water. the cube weighs.
L 13 Fluids [2]: Statics  fluids at rest  More on fluids.  How can a steel boat float.  A ship can float in a cup of water!  Today’s weather Today’s.
Knight: Chapter 15 Fluids & Elasticity ( Pressure in liquids, Measuring and using pressure, & Buoyancy)
L 13 Fluids [2]: Statics  fluids at rest  More on fluids at rest  How is atmospheric pressure measured?  Buoyancy: How can a steel boat float?
1 Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas.
Fluids Unlike a solid, a fluid can flow. Fluids conform to the shape of the container in which it is put. Liquids are fluids the volume of which does not.
L 13 Fluids [2]: Statics  fluids at rest  More on fluids.  How can a steel boat float.  A ship can float in a cup of water!  Today’s weather Today’s.
The fun never stops.... Liquids and Gases can exert forces. – Examples: waves crashing, wind Liquids and Gases can exert forces. – Examples: waves crashing,
Fluids 101 Chapter 10. Fluids Any material that flows and offers little resistance to changing its shape. –Liquids –Gases –Plasma?
Floating and Sinking. Buoyancy When you pick up an object underwater it seems much lighter due to the upward force that water and other fluids exert known.
Archimedes’ and Pascal’s Principles. Archimedes' principle states that the apparent loss in weight of a body that is totally or partially immersed in.
Chapter 19 Liquids.
Properties of Fluids 16-2.
C HAPTER 11.1 AND 11.2 G UIDED R EADING A NSWERS.
Fluid Mechanics Liquids and gases have the ability to flow
Forces in Fluids Chapter 13. Fluid Pressure  Section 13-1.
CONCEPTUAL PHYSICS Liquids.
L 13 Fluids [2]: Statics  fluids at rest  More on fluids.  How can a steel boat float.  A ship can float in a cup of water!  Today’s weather Today’s.
Wednesday, Apr. 14, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #20 Wednesday, Apr. 14, 2004 Dr. Jaehoon Yu Variation.
Forces influence the motion and properties of fluids.
L 13 Fluids [2]: Fluid Statics  fluids at rest  More on fluids at rest  How is atmospheric pressure measured?  Buoyancy: How can a steel boat float?
L 13 Fluids - 2 Fluid Statics: fluids at rest
L 13 Fluids [2]: Statics  fluids at rest  More on fluids at rest  How is atmospheric pressure measured?  Today’s weather Today’s weather Today’s weather.
S.N. P ATEL I NSTITUTE O F T ECHNOLOGY & R ESEARCH C ENTRE, U MRAKH Fluid Static and it’s application Guided by : Prof. Nirav Raykundaliya( Assistant.
AND THEIR FORCES Fluids. Matter that can flow is called a fluid. “Fluid” does not mean the same thing as “liquid.” Both liquids and gases are called fluids.
Chapter 11 – Forces in Fluids. Pressure The amount of pressure you exert depends on the area over which you exert force. Pressure is equal to the force.
Phys 101, General Physics I. Reference Book is Fluid Mechanics A fluid is a collection of molecules that are randomly arranged and held together by weak.
Ying Yi PhD Chapter 11 Fluids 1 PHYS HCC. Outline PHYS HCC 2 Density and Pressure Pressure and Depth in a Static fluid Buoyant Forces and Archimedes’
Forces in Fluids. Pressure The force distributed over an area Pressure = Force/Area Unit: the Pascal (Pa) 1 Pa = 1 N/m 2.
Lots of slides, but little writing…
L 13 Fluids [2]: Statics  fluids at rest
L 13 Fluids [2]: Fluid Statics: fluids at rest
Fluid Mechanics Presentation on FLUID STATICS BY Group:
Force In Fluids Chapter 11
Fluids Liquids and Gases Chapter 11.
Pressure in Fluid Systems
3.2 Pressure and the Buoyant Force
Buoyancy & Pressure Ch 2 Section 3.
Physical Science Forces in Fluids.
Archimedes’ and Pascal’s Principles
L 13 Fluids [2]: Statics  fluids at rest
L 13 Fluids [2]: Statics  fluids at rest
Fluid Properties Chapter 16 Section 2.
Chapter 14 PHYSICS 2048C Fluids.
Liquids.
Presentation transcript:

REPORTED BY: Xela Alexis S. Ibarra III - NEWTON

Hydrostatics – it is the study of this branch of fluid mechanics. Pressure on the walls and dams, and buoyancy is the one it comprises the examination of forces on immersed bodies.

Pressure – is a force exerted over an area and is measured in Pascals (Pa). The force acting on a surface divided by the area over which it acts. Formula: P(in Pa) = Force (in newtons) Area ( in m²)

Pressure can be measured in various ways and it is found that the difference of unknown pressure and atmospheric pressure is the gauge pressure, whereas the true pressure called absolute pressure which includes atmospheric pressure. Formula: p = p gauge + p atm Absolute pressure = gauge pressure + atmospheric pressure

1. The forces of fluids at rest exert on the walls of its container, and vice versa, and always act perpendicular to the walls. 2. An external pressure exerted on a fluid is transmitted uniformly throughout the volume of the fluid. This statement is known as Pascals Principle. A familiar example is the hydraulic jack. 3. The pressure on small surface in a fluid is the same regardless of the orientation of the surface.

The pressure in a fluid becomes greater with increasing depth because of the weight of the overlaying material. Formula: Suppose we have a tank of height h and cross sectional area A that is filled with a fluid density p. V = Ah W = mg =(pV)g = pgAh

The pressure p fluid the fluid that exerts on the bottom of the tank is its weight divided by the area of the bottom, with the result that, p fluid = F/A = w/A = pgh The total pressure within a fluid also depends on the pressure p external on its surface by atmosphere. Thus, p = p external + pgh

It is also called atmospheric pressure. The downward pressure exerted by the weight of the overlying atmosphere. It has a mean value of one atmosphere at sea level but decreases as elevation increases. Barometer – is an instrument used to measure the atmospheric pressure, which changes with your altitude and with the weather. It has a mercury pool which is under the pressure due to the air and will make a column of mercury whose height and weight pressure equal to the air pressure on the mercury pool.

1. Dams – it generates electricity by releasing a controlled flow of high0-pressure water from a reservoir through a channel called the penstock. 2. Hydraulics – is the application of fluid mechanics to engineering devices involving liquids, usually water and oil. The hydraulic lift works on the principle that the effort to move something is the product of the force and the distance the object is moved.

3. Pneumatic Machines – it is a robotic hand that is capable of performing delicate task of picking up and holding an egg without breaking it. A tactile array sensor sends information to the robot's control computer about the pressure the robotic hand exerts. 4. Blood Pressure check – it is checks through sphygmomanometer. An instrument used to measure blood pressure in an artery that consists of a pressure gauge, an inflatable cuff placed around the upper arm, and an inflator bulb or pressure pump.

A Greek philosopher Archimedes discovered the relationship between buoyancy )tendency to float) and displaced liquid when he climbed into his bathtub. It is called the Archimedes Principle. Archimedes principle of Buoyancy – an immersed object is buoyed up by a force equal to the weight of the fluid it displaces.

Buoyant force = weight of displaced fluid F buoyant = weight of displaced fluid where F = pgV Buoyuancy in Water Sink : d block > d water Float : d block < d water Buoyancy in Air - the same buoyancy happens in the air. By heating the air and lowering the density in the balloon, the balloon floats in the unheated (more dense) air. Thats how the hot air balloon works.

THANK YOU!