How to Use This Presentation

Slides:



Advertisements
Similar presentations
Physics 111: Mechanics Lecture 7
Advertisements

Preview Section 1 Work Section 2 Energy
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Work and Energy Chapter 5 Table of Contents Section 1 Work Section.
AP Physics B Summer Course 年AP物理B暑假班
Chapter 5 – WORK and ENERGY. 5.2 MECHANICAL ENERGY.
UNIT 4 Work, Energy, and Power. By what factor does the kinetic energy of a car change when its speed is tripled? 1) no change at all 2) factor of 3 3)
Work.  The product of the magnitudes of the component of a force along the direction of displacement and the displacement.  Units-Force x Length  N.
Work and Energy Chapter 7.
Chapter 5 Work and Energy 6A MULTIPLE CHOICE
Chapter 5 Work and Energy
Bellringer 10/25 A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion,
Objectives Recognize the difference between the scientific and ordinary definitions of work. Define work by relating it to force and displacement. Identify.
Chapter 5 Work and Energy. Force, displacement  WORK.
Chapter 5 – Work and Energy If an object is moved by a force and the force and displacement are in the same direction, then work equals the product of.
Chapter 5 Work and Energy. Review  x = v i  t + ½ a  t 2  x = ½ (v i + v f )  t v f = v i + a  t v f 2 = v i 2 + 2a  x.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work Chapter 5 Definition of Work Work is done on an object.
Preview Objectives Definition of Work Chapter 5 Section 1 Work.
Section 5–2: Energy Physics Coach Kelsoe Pages 164 – 172.
Chapter 7 Energy of a System. Introduction to Energy A variety of problems can be solved with Newton’s Laws and associated principles. Some problems that.
Work and Energy. Work a force that causes a displacement of an object does work on the object W = Fdnewtons times meters (N·m) or joules (J)
Preview Multiple Choice Short Response Extended Response.
Work and Energy Chapter 7 Conservation of Energy Energy is a quantity that can be converted from one form to another but cannot be created or destroyed.
Chapter 5 “Work and Energy” Honors Physics. Terms In science, certain terms have meanings that are different from common usage. Work, Energy and Power.
Energy and Energy Conservation. Energy Two types of Energy: 1. Kinetic Energy (KE) - energy of an object due to its motion 2. Potential Energy (PE) -
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Definition of Work Chapter 5 Section 1 Work.
Conservation of Energy
Work has a specific definition in physics
Work and Energy Physics Mr. Day. Work F Work - the product of the magnitudes of the component of a force along the direction of displacement and the displacement.
Work and EnergySection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 WorkWork Section 2 EnergyEnergy Section 3 Conservation of EnergyConservation.
© Houghton Mifflin Harcourt Publishing Company Chapter 5 Definition of Work Work is done on an object when a force causes a displacement of the object.
Potential Energy and Conservation of Energy
Work and EnergySection 1 Preview Section 1 WorkWork Section 2 EnergyEnergy Section 3 Conservation of EnergyConservation of Energy Section 4 PowerPower.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Definition of Work Chapter 5 Section 1 Work.
WORK & ENERGY Physics, Chapter 5. Energy & Work What is a definition of energy? Because of the association of energy with work, we begin with a discussion.
Work and Energy. Section Objectives: Define work by relating it to force and displacement. Identify where work is being performed in a variety of situations.
Physics Section 5.2 Define and apply forms of mechanical energy. Energy is the ability to do work. Kinetic energy is the energy of an object due its motion.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work Chapter 5 Definition of Work Work is done on an object.
Chapter 5 Work and Energy. Question A crate of mass 10 kg is on a ramp that is inclined at an angle of 30⁰ from the horizontal. A force with a magnitude.
Chapter 5 Work and Energy.
Section 5–3: Conservation of Energy Physics Coach Kelsoe Pages 173 – 178.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work Chapter 5 Definition of Work Work is done on an object.
The Physics Energy. Objectives Identify several forms of energy. Calculate kinetic energy for an object. Apply the work–kinetic energy theorem to solve.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Work and Energy Chapter 5 Table of Contents Section 1 Work Section.
How to Use This Presentation
Work, Energy and Power.
Work Work – The product of the magnitudes of the component of force along the direction of displacement and the displacement. Or, more simply, a force.
Work and Energy Work.
Chapter 5 Section 1 Work Objectives
Chapter 5 Section 1 Work Preview Objectives Definition of Work.
Chapter 5 Work and Energy.
Chapter 5 Section 1 Work Preview Objectives Definition of Work.
Chapter 5 Section 1 Work Preview Objectives Definition of Work.
Work and Energy Physics Chapter 5.
Chapter 5 Work, Power and Energy.
Section 3 Conservation of Energy
How to Use This Presentation
Energy. Energy Energy (def.) the ability to do work. Unit is Joules. Work and energy are interrelated. Work must be done on an object to get it to.
Chapter 5 Work and Energy
Chapter 5 Definition of Work 5.1 Work
Standardized Test Prep
WORK And NRG.
Essential Question: How do you calculate potential and kinetic energy?
Chapter 5 Pgs
Review of Work and Power
Chapter 5 Definition of Work
Chapter 5 Table of Contents Section 1 Work Section 2 Energy
Work and Energy.
Unit 5 ENERGY.
In this section you will:
Potential & Kinetic energy
Presentation transcript:

How to Use This Presentation To View the presentation as a slideshow with effects select “View” on the menu bar and click on “Slide Show.” To advance through the presentation, click the right-arrow key or the space bar. From the resources slide, click on any resource to see a presentation for that resource. From the Chapter menu screen click on any lesson to go directly to that lesson’s presentation. You may exit the slide show at any time by pressing the Esc key.

Standardized Test Prep Resources Chapter Presentation Visual Concepts Transparencies Sample Problems Standardized Test Prep

Chapter 5 Table of Contents Section 1 Work Section 2 Energy Work and Energy Table of Contents Section 1 Work Section 2 Energy Section 3 Conservation of Energy Section 4 Power

Section 1 Work Chapter 5 Objectives Recognize the difference between the scientific and ordinary definitions of work. Define work by relating it to force and displacement. Identify where work is being performed in a variety of situations. Calculate the net work done when many forces are applied to an object.

Chapter 5 Definition of Work Section 1 Work Chapter 5 Definition of Work Work is done on an object when a force causes a displacement of the object. Work is done only when components of a force are parallel to a displacement.

Section 1 Work Chapter 5 Definition of Work

Sign Conventions for Work Section 1 Work Chapter 5 Sign Conventions for Work

Sample Problem F = 25 N

Chapter 5 Objectives Identify several forms of energy. Section 2 Energy Chapter 5 Objectives Identify several forms of energy. Calculate kinetic energy for an object. Apply the work–kinetic energy theorem to solve problems. Distinguish between kinetic and potential energy. Classify different types of potential energy. Calculate the potential energy associated with an object’s position.

Chapter 5 Kinetic Energy Kinetic Energy Section 2 Energy Chapter 5 Kinetic Energy Kinetic Energy The energy of an object that is due to the object’s motion is called kinetic energy. Kinetic energy depends on speed and mass.

Section 2 Energy Chapter 5 Kinetic Energy

Kinetic Energy, continued (N/A) Section 2 Energy Chapter 5 Kinetic Energy, continued (N/A) Work-Kinetic Energy Theorem The net work done by all the forces acting on an object is equal to the change in the object’s kinetic energy. The net work done on a body equals its change in kinetic energy. Wnet = ∆KE net work = change in kinetic energy

Work-Kinetic Energy Theorem (N/A) Section 2 Energy Chapter 5 Work-Kinetic Energy Theorem (N/A)

gravitational PE = mass  free-fall acceleration  height Section 2 Energy Chapter 5 Potential Energy Potential Energy is the energy associated with an object because of the position, shape, or condition of the object. Gravitational potential energy is the potential energy stored in the gravitational fields of interacting bodies. Gravitational potential energy depends on height from a zero level. PEg = mgh gravitational PE = mass  free-fall acceleration  height

Section 2 Energy Chapter 5 Potential Energy

Potential Energy, continued Section 2 Energy Chapter 5 Potential Energy, continued Elastic potential energy is the energy available for use when a deformed elastic object returns to its original configuration. The symbol k is called the spring constant, a parameter that measures the spring’s resistance to being compressed or stretched.

Elastic Potential Energy Section 2 Energy Chapter 5 Elastic Potential Energy

Section 2 Energy Chapter 5 Spring Constant

Chapter 5 Sample Problem Potential Energy Section 2 Energy Chapter 5 Sample Problem Potential Energy A 70.0 kg stuntman is attached to a bungee cord with an unstretched length of 15.0 m. He jumps off a bridge spanning a river from a height of 50.0 m. When he finally stops, the cord has a stretched length of 44.0 m. Treat the stuntman as a point mass, and disregard the weight of the bungee cord. Assuming the spring constant of the bungee cord is 71.8 N/m, what is the total potential energy relative to the water when the man stops falling?

Sample Problem, continued Section 2 Energy Chapter 5 Sample Problem, continued Potential Energy 1. Define Given:m = 70.0 kg k = 71.8 N/m g = 9.81 m/s2 h = 50.0 m – 44.0 m = 6.0 m x = 44.0 m – 15.0 m = 29.0 m PE = 0 J at river level Unknown: PEtot = ?

Sample Problem, continued Section 2 Energy Chapter 5 Sample Problem, continued Potential Energy 2. Plan Choose an equation or situation: The zero level for gravitational potential energy is chosen to be at the surface of the water. The total potential energy is the sum of the gravitational and elastic potential energy.

Sample Problem, continued Section 2 Energy Chapter 5 Sample Problem, continued Potential Energy 3. Calculate Substitute the values into the equations and solve:

Sample Problem, continued Section 2 Energy Chapter 5 Sample Problem, continued Potential Energy 4. Evaluate One way to evaluate the answer is to make an order-of-magnitude estimate. The gravitational potential energy is on the order of 102 kg  10 m/s2  10 m = 104 J. The elastic potential energy is on the order of 1  102 N/m  102 m2 = 104 J. Thus, the total potential energy should be on the order of 2  104 J. This number is close to the actual answer.

Section 3 Conservation of Energy Chapter 5 Objectives Identify situations in which conservation of mechanical energy is valid. Recognize the forms that conserved energy can take. Solve problems using conservation of mechanical energy.

Chapter 5 Conserved Quantities Section 3 Conservation of Energy Chapter 5 Conserved Quantities When we say that something is conserved, we mean that it remains constant.

Chapter 5 Mechanical Energy Section 3 Conservation of Energy Chapter 5 Mechanical Energy Mechanical energy is the sum of kinetic energy and all forms of potential energy associated with an object or group of objects. ME = KE + ∑PE Mechanical energy is often conserved. MEi = MEf initial mechanical energy = final mechanical energy (in the absence of friction)

Conservation of Mechanical Energy Section 3 Conservation of Energy Chapter 5 Conservation of Mechanical Energy

Chapter 5 Sample Problem Conservation of Mechanical Energy Section 3 Conservation of Energy Chapter 5 Sample Problem Conservation of Mechanical Energy Starting from rest, a child zooms down a frictionless slide from an initial height of 3.00 m. What is her speed at the bottom of the slide? Assume she has a mass of 25.0 kg.

Sample Problem, continued Section 3 Conservation of Energy Chapter 5 Sample Problem, continued Conservation of Mechanical Energy 1. Define Given: h = hi = 3.00 m m = 25.0 kg vi = 0.0 m/s hf = 0 m Unknown: vf = ?

Sample Problem, continued Section 3 Conservation of Energy Chapter 5 Sample Problem, continued Conservation of Mechanical Energy 2. Plan Choose an equation or situation: The slide is frictionless, so mechanical energy is conserved. Kinetic energy and gravitational potential energy are the only forms of energy present.

Sample Problem, continued Section 3 Conservation of Energy Chapter 5 Sample Problem, continued Conservation of Mechanical Energy 2. Plan, continued The zero level chosen for gravitational potential energy is the bottom of the slide. Because the child ends at the zero level, the final gravitational potential energy is zero. PEg,f = 0

Sample Problem, continued Section 3 Conservation of Energy Chapter 5 Sample Problem, continued Conservation of Mechanical Energy 2. Plan, continued The initial gravitational potential energy at the top of the slide is PEg,i = mghi = mgh Because the child starts at rest, the initial kinetic energy at the top is zero. KEi = 0 Therefore, the final kinetic energy is as follows:

Sample Problem, continued Section 3 Conservation of Energy Chapter 5 Sample Problem, continued Conservation of Mechanical Energy 3. Calculate Substitute values into the equations: PEg,i = (25.0 kg)(9.81 m/s2)(3.00 m) = 736 J KEf = (1/2)(25.0 kg)vf2 Now use the calculated quantities to evaluate the final velocity. MEi = MEf PEi + KEi = PEf + KEf 736 J + 0 J = 0 J + (0.500)(25.0 kg)vf2 vf = 7.67 m/s

Sample Problem, continued Section 3 Conservation of Energy Chapter 5 Sample Problem, continued Conservation of Mechanical Energy 4. Evaluate The expression for the square of the final speed can be written as follows: Notice that the masses cancel, so the final speed does not depend on the mass of the child. This result makes sense because the acceleration of an object due to gravity does not depend on the mass of the object.

Mechanical Energy, continued Section 3 Conservation of Energy Chapter 5 Mechanical Energy, continued Mechanical Energy is not conserved in the presence of friction. As a sanding block slides on a piece of wood, energy (in the form of heat) is dissipated into the block and surface.

Chapter 5 Objectives Relate the concepts of energy, time, and power. Section 4 Power Chapter 5 Objectives Relate the concepts of energy, time, and power. Calculate power in two different ways. Explain the effect of machines on work and power.

Rate of Energy Transfer Section 4 Power Chapter 5 Unit of power is the Watt (W); 1 W = 1 J/s Rate of Energy Transfer Power is a quantity that measures the rate at which work is done or energy is transformed. P = W/∆t power = work ÷ time interval An alternate equation for power in terms of force and speed is P = Fv power = force  speed

Section 4 Power Chapter 5 Power

Chapter 5 Multiple Choice Standardized Test Prep Multiple Choice 1. In which of the following situations is work not being done? A. A chair is lifted vertically with respect to the floor. B. A bookcase is slid across carpeting. C. A table is dropped onto the ground. D. A stack of books is carried at waist level across a room.

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 1. In which of the following situations is work not being done? A. A chair is lifted vertically with respect to the floor. B. A bookcase is slid across carpeting. C. A table is dropped onto the ground. D. A stack of books is carried at waist level across a room.

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 2. Which of the following equations correctly describes the relation between power,work, and time?

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 2. Which of the following equations correctly describes the relation between power,work, and time?

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued Use the graph below to answer questions 3–5. The graph shows the energy of a 75 g yo-yo at different times as the yo-yo moves up and down on its string.

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 3. By what amount does the mechanical energy of the yo-yo change after 6.0 s? A. 500 mJ B. 0 mJ C. –100 mJ D. –600 mJ

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 3. By what amount does the mechanical energy of the yo-yo change after 6.0 s? A. 500 mJ B. 0 mJ C. –100 mJ D. –600 mJ

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 4. What is the speed of the yo-yo after 4.5 s? F. 3.1 m/s G. 2.3 m/s H. 3.6 m/s J. 1.6 m/s

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 4. What is the speed of the yo-yo after 4.5 s? F. 3.1 m/s G. 2.3 m/s H. 3.6 m/s J. 1.6 m/s

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 5. What is the maximum height of the yo-yo? A. 0.27 m B. 0.54 m C. 0.75 m D. 0.82 m

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 5. What is the maximum height of the yo-yo? A. 0.27 m B. 0.54 m C. 0.75 m D. 0.82 m

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 6. A car with mass m requires 5.0 kJ of work to move from rest to a final speed v. If this same amount of work is performed during the same amount of time on a car with a mass of 2m, what is the final speed of the second car?

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 6. A car with mass m requires 5.0 kJ of work to move from rest to a final speed v. If this same amount of work is performed during the same amount of time on a car with a mass of 2m, what is the final speed of the second car?

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 7–8. A 70.0 kg base runner moving at a speed of 4.0 m/s begins his slide into second base. The coefficient of friction between his clothes and Earth is 0.70. His slide lowers his speed to zero just as he reaches the base. 7. How much mechanical energy is lost because of friction acting on the runner? A. 1100 J B. 560 J C. 140 J D. 0 J

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 7–8. A 70.0 kg base runner moving at a speed of 4.0 m/s begins his slide into second base. The coefficient of friction between his clothes and Earth is 0.70. His slide lowers his speed to zero just as he reaches the base. 7. How much mechanical energy is lost because of friction acting on the runner? A. 1100 J B. 560 J C. 140 J D. 0 J

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 7–8. A 70.0 kg base runner moving at a speed of 4.0 m/s begins his slide into second base. The coefficient of friction between his clothes and Earth is 0.70. His slide lowers his speed to zero just as he reaches the base. 8. How far does the runner slide? F. 0.29 m G. 0.57 m H. 0.86 m J. 1.2 m

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 7–8. A 70.0 kg base runner moving at a speed of 4.0 m/s begins his slide into second base. The coefficient of friction between his clothes and Earth is 0.70. His slide lowers his speed to zero just as he reaches the base. 8. How far does the runner slide? F. 0.29 m G. 0.57 m H. 0.86 m J. 1.2 m

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued Use the passage below to answer questions 9–10. A spring scale has a spring with a force constant of 250 N/m and a weighing pan with a mass of 0.075 kg. During one weighing, the spring is stretched a distance of 12 cm from equilibrium. During a second weighing, the spring is stretched a distance of 18 cm. How far does the runner slide?

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 9. How much greater is the elastic potential energy of the stretched spring during the second weighing than during the first weighing?

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 9. How much greater is the elastic potential energy of the stretched spring during the second weighing than during the first weighing?

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 10. If the spring is suddenly released after each weighing, the weighing pan moves back and forth through the equilibrium position. What is the ratio of the pan’s maximum speed after the second weighing to the pan’s maximum speed after the first weighing? Consider the force of gravity on the pan to be negligible.

Multiple Choice, continued Chapter 5 Standardized Test Prep Multiple Choice, continued 10. If the spring is suddenly released after each weighing, the weighing pan moves back and forth through the equilibrium position. What is the ratio of the pan’s maximum speed after the second weighing to the pan’s maximum speed after the first weighing? Consider the force of gravity on the pan to be negligible.

Chapter 5 Short Response Standardized Test Prep Short Response 11. A student with a mass of 66.0 kg climbs a staircase in 44.0 s. If the distance between the base and the top of the staircase is 14.0 m, how much power will the student deliver by climbing the stairs?

Short Response, continued Chapter 5 Standardized Test Prep Short Response, continued 11. A student with a mass of 66.0 kg climbs a staircase in 44.0 s. If the distance between the base and the top of the staircase is 14.0 m, how much power will the student deliver by climbing the stairs? Answer: 206 W

Short Response, continued Chapter 5 Standardized Test Prep Short Response, continued Base your answers to questions 12–13 on the information below. A 75.0 kg man jumps from a window that is 1.00 m above a sidewalk. 12. Write the equation for the man’s speed when he strikes the ground.

Short Response, continued Chapter 5 Standardized Test Prep Short Response, continued Base your answers to questions 12–13 on the information below. A 75.0 kg man jumps from a window that is 1.00 m above a sidewalk. 12. Write the equation for the man’s speed when he strikes the ground.

Short Response, continued Chapter 5 Standardized Test Prep Short Response, continued Base your answers to questions 12–13 on the information below. A 75.0 kg man jumps from a window that is 1.00 m above a sidewalk. 13. Calculate the man’s speed when he strikes the ground.

Short Response, continued Chapter 5 Standardized Test Prep Short Response, continued Base your answers to questions 12–13 on the information below. A 75.0 kg man jumps from a window that is 1.00 m above a sidewalk. 13. Calculate the man’s speed when he strikes the ground. Answer: 4.4 m/s

Chapter 5 Extended Response Standardized Test Prep Extended Response Base your answers to questions 14–16 on the information below. A projectile with a mass of 5.0 kg is shot horizontally from a height of 25.0 m above a flat desert surface. The projectile’s initial speed is 17 m/s. Calculate the following for the instant before the projectile hits the surface: 14. The work done on the projectile by gravity.

Extended Response, continued Chapter 5 Standardized Test Prep Extended Response, continued Base your answers to questions 14–16 on the information below. A projectile with a mass of 5.0 kg is shot horizontally from a height of 25.0 m above a flat desert surface. The projectile’s initial speed is 17 m/s. Calculate the following for the instant before the projectile hits the surface: 14. The work done on the projectile by gravity. Answer: 1200 J

Extended Response, continued Chapter 5 Standardized Test Prep Extended Response, continued Base your answers to questions 14–16 on the information below. A projectile with a mass of 5.0 kg is shot horizontally from a height of 25.0 m above a flat desert surface. The projectile’s initial speed is 17 m/s. Calculate the following for the instant before the projectile hits the surface: 15. The change in kinetic energy since the projectile was fired.

Extended Response, continued Chapter 5 Standardized Test Prep Extended Response, continued Base your answers to questions 14–16 on the information below. A projectile with a mass of 5.0 kg is shot horizontally from a height of 25.0 m above a flat desert surface. The projectile’s initial speed is 17 m/s. Calculate the following for the instant before the projectile hits the surface: 15. The change in kinetic energy since the projectile was fired. Answer: 1200 J

Extended Response, continued Chapter 5 Standardized Test Prep Extended Response, continued Base your answers to questions 14–16 on the information below. A projectile with a mass of 5.0 kg is shot horizontally from a height of 25.0 m above a flat desert surface. The projectile’s initial speed is 17 m/s. Calculate the following for the instant before the projectile hits the surface: 16. The final kinetic energy of the projectile.

Extended Response, continued Chapter 5 Standardized Test Prep Extended Response, continued Base your answers to questions 14–16 on the information below. A projectile with a mass of 5.0 kg is shot horizontally from a height of 25.0 m above a flat desert surface. The projectile’s initial speed is 17 m/s. Calculate the following for the instant before the projectile hits the surface: 16. The final kinetic energy of the projectile. Answer: 1900 J

Extended Response, continued Chapter 5 Standardized Test Prep Extended Response, continued 17. A skier starts from rest at the top of a hill that is inclined at 10.5° with the horizontal. The hillside is 200.0 m long, and the coefficient of friction between the snow and the skis is 0.075. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier move along the horizontal portion of the snow before coming to rest? Show all of your work.

Extended Response, continued Chapter 5 Standardized Test Prep Extended Response, continued 17. A skier starts from rest at the top of a hill that is inclined at 10.5° with the horizontal. The hillside is 200.0 m long, and the coefficient of friction between the snow and the skis is 0.075. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier move along the horizontal portion of the snow before coming to rest? Show all of your work. Answer: 290 m

Section 3 Conservation of Energy Chapter 5 Mechanical Energy