Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy 11/12/2018.

Slides:



Advertisements
Similar presentations
Memory.
Advertisements

Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 13: Main Memory (Chapter 8)
CS 311 – Lecture 21 Outline Memory management in UNIX
Modified from Silberschatz, Galvin and Gagne Lecture 16 Chapter 8: Main Memory.
Memory Management.
1 Friday, June 30, 2006 "Man's mind, once stretched by a new idea, never regains its original dimensions." - Oliver Wendell Holmes, Jr.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 8: Main Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Multistep Processing of a User Program User programs go through several steps before.
Main Memory. Background Program must be brought (from disk) into memory and placed within a process for it to be run Main memory and registers are only.
03/17/2008CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying the textbook.
03/05/2008CSCI 315 Operating Systems Design1 Memory Management Notice: The slides for this lecture have been largely based on those accompanying the textbook.
Chapter 8: Main Memory.
Chapter 8: Main Memory. 8.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 8: Memory Management Background Swapping Contiguous.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 346, Royden, Operating System Concepts Operating Systems Lecture 24 Paging.
Memory Management -1 Background Swapping Memory Management Schemes
Example of a Resource Allocation Graph CS1252-OPERATING SYSTEM UNIT III1.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 32 Paging Read Ch. 9.4.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill Technology Education Lecture 8 Operating Systems.
Computer Architecture and Operating Systems CS 3230: Operating System Section Lecture OS-7 Memory Management (1) Department of Computer Science and Software.
Swapping and Contiguous Memory Allocation. Multistep Processing of a User Program User programs go through several steps before being run. Program components.
Operating Systems Chapter 8
8.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 8: Memory-Management Strategies Objectives To provide a detailed description.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 9: Memory Management Background Swapping Contiguous Allocation Paging Segmentation.
Background Program must be brought into memory and placed within a process for it to be run. Input queue – collection of processes on the disk that are.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 8: Main Memory.
CE Operating Systems Lecture 14 Memory management.
Memory. Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation.
Main Memory. Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The.
CS6502 Operating Systems - Dr. J. Garrido Memory Management – Part 1 Class Will Start Momentarily… Lecture 8b CS6502 Operating Systems Dr. Jose M. Garrido.
Chapter 8: Main Memory. 8.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Memory and Addressing It all starts.
Background Program must be brought into memory and placed within a process for it to be run. Input queue – collection of processes on the disk that are.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 8: Main Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 8: Main Memory.
Chapter 8: Memory Management. 8.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 8: Memory Management Background Swapping Contiguous.
Chapter 7: Main Memory CS 170, Fall Program Execution & Memory Management Program execution Swapping Contiguous Memory Allocation Paging Structure.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition, Chapter 8: Memory- Management Strategies.
Main Memory CSSE 332 Operating Systems Rose-Hulman Institute of Technology.
8.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 8: Memory-Management Strategies.
Module 9: Memory Management
Chapter 9: Memory Management
Chapter 8: Memory Management
Chapter 8: Main Memory.
Chapter 8: Memory Management
Main Memory Management
Chapter 8: Main Memory.
Chapter 8: Main Memory.
Storage Management Chapter 9: Memory Management
Operating System Concepts
Memory Management 11/17/2018 A. Berrached:CS4315:UHD.
Module 9: Memory Management
Chapter 8: Main Memory.
Chapter 8: Main Memory.
Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy Chapter 8 11/24/2018.
Main Memory Session -15.
Background Program must be brought into memory and placed within a process for it to be run. Input queue – collection of processes on the disk that are.
CSS 430: Operating Systems - Main Memory
Multistep Processing of a User Program
Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy Chapter 9 12/1/2018.
So far… Text RO …. printf() RW link printf Linking, loading
Memory Management-I 1.
Main Memory Background Swapping Contiguous Allocation Paging
Chapter 8: Memory management
Outline Module 1 and 2 dealt with processes, scheduling and synchronization Next two modules will deal with memory and storage Processes require data to.
Lecture 3: Main Memory.
So far in memory management…
Chapter 8: Memory Management strategies
Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy Chapter 9 4/5/2019.
CSE 542: Operating Systems
Page Main Memory.
Presentation transcript:

Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy 11/12/2018

Binding of Instructions and Data to Memory Address binding of instructions and data to memory addresses can happen at three different stages. Compile time: If memory location known a priori, absolute code can be generated; must recompile code if starting location changes. Load time: Must generate relocatable code if memory location is not known at compile time. Execution time: Binding delayed until run time if the process can be moved during its execution from one memory segment to another. Need hardware support for address maps (e.g., base and limit registers). 11/12/2018

Dynamic relocation using a relocation register 11/12/2018

Hardware Support for Relocation and Limit Registers 11/12/2018

Dynamic Linking Linking postponed until execution time. Small piece of code, stub, used to locate the appropriate memory-resident library routine. Stub replaces itself with the address of the routine, and executes the routine. Operating system needed to check if routine is in processes’ memory address. Dynamic linking is particularly useful for libraries and remote object access. 11/12/2018

Contiguous Allocation Main memory usually into two partitions: Resident operating system, usually held in low memory with interrupt vector. User processes then held in high memory. Single-partition allocation Relocation-register scheme used to protect user processes from each other, and from changing operating-system code and data. Relocation register contains value of smallest physical address; limit register contains range of logical addresses – each logical address must be less than the limit register. 11/12/2018

Contiguous Allocation (Cont.) Multiple-partition allocation Hole – block of available memory; holes of various size are scattered throughout memory. When a process arrives, it is allocated memory from a hole large enough to accommodate it. Operating system maintains information about: a) allocated partitions b) free partitions (hole) OS OS OS OS process 5 process 5 process 5 process 5 process 9 process 9 process 8 process 10 process 2 process 2 process 2 process 2 11/12/2018

Dynamic Storage-Allocation Problem How to satisfy a request of size n from a list of free holes. First-fit: Allocate the first hole that is big enough. Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by size. Produces the smallest leftover hole. Worst-fit: Allocate the largest hole; must also search entire list. Produces the largest leftover hole. First-fit and best-fit better than worst-fit in terms of speed and storage utilization. 11/12/2018

Fragmentation External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous. Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used. Reduce external fragmentation by compaction Shuffle memory contents to place all free memory together in one large block. Compaction is possible only if relocation is dynamic, and is done at execution time. I/O problem Latch job in memory while it is involved in I/O. Do I/O only into OS buffers. 11/12/2018

Paging Logical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available. Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 8192 bytes). Divide logical memory into blocks of same size called pages. Keep track of all free frames. To run a program of size n pages, need to find n free frames and load program. Set up a page table to translate logical to physical addresses. Internal fragmentation. 11/12/2018

Address Translation Scheme Address generated by CPU is divided into: Page number (p) – used as an index into a page table which contains base address of each page in physical memory. Page offset (d) – combined with base address to define the physical memory address that is sent to the memory unit. 11/12/2018

Address Translation Architecture 11/12/2018

Paging Example 11/12/2018

Paging Example 11/12/2018

Free Frames Before allocation After allocation 11/12/2018

Implementation of Page Table Page table is kept in main memory. Page-table base register (PTBR) points to the page table. Page-table length register (PRLR) indicates size of the page table. In this scheme every data/instruction access requires two memory accesses. One for the page table and one for the data/instruction. The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs) 11/12/2018

Paging Hardware With TLB 11/12/2018

Summary We looked at simple paging scheme. This is the model for memory management you will implement in Project 1. Next class we will look at demand paging. 11/12/2018