Spectral appearance of terrestrial exoplanets

Slides:



Advertisements
Similar presentations
PLAnetary Transits and Oscillations of stars H. Rauer 1, C. Catala 2, D. Pollacco 3, S. Udry 4 and the PLATO Team 1: Institut für Planetenforschung, DLR.
Advertisements

1 Biomarkers in terrestrial planet atmospheres Super-Earths & Life a fascinating cross-disciplinary puzzle Lisa Kaltenegger MPIA/Harvard University IAUS276,
Pluto: the next decade of discovery Leslie Young Southwest Research Institute
METO621 Lesson 18. Thermal Emission in the Atmosphere – Treatment of clouds Scattering by cloud particles is usually ignored in the longwave spectrum.
8/28/2002 Ozone Abundance in Earth-like Planets NTNU Earth Science Department Shung-wen Hsu Supervisor : Gu, Pin-Gao.
Biomarkers in Super Earth Atmospheres: Photochemical Responses John Lee Grenfell Zentrum für Astronomie und Astrophysik, Technische Universität (TU) Berlin.
Effect of Rotation Rate on Terrestrial Planet Characterization James Cho and Sara Seager (DTM, Carnegie Institution of Washington)
Reflection Spectra of Giant Planets With an Eye Towards TPF (and EPIC & ECLIPSE) Jonathan J. Fortney Mark S. Marley NASA Ames Research Center 2005 Aspen.
MET 60: Chapter: 4 (W&H) and 2 (Stull) Radiative Transfer Dr. Craig Clements San José State University.
Titan’s Atmospheric Chemistry Emily Schaller GE/AY 132 March 2004.
Atmospheric Emission.
Lecture 14: Searching for planets orbiting other stars III: Using Spectra 1.The Spectra of Stars and Planets 2.The Doppler Effect and its uses 3.Using.
1 Assembling the puzzle From Earths to Super-Earths Hitran to the rescue... “ Good planets are hard to find ” Bracewell Lisa Kaltenegger Harvard-Smithsonian.
A Channel Selection Method for CO 2 Retrieval Using Information Content Analysis Le Kuai 1, Vijay Natraj 1, Run-Lie Shia 1, Charles Miller 2, Yuk Yung.
Detecting Photosynthesis on Exoplanets Orbiting M-Class Stars Sky Rashby Advisor: Yuk L. Yung.
Astronomy190 - Topics in Astronomy
Extrasolar planets Although current observations suggest that Earth-size rocky planets may be common, their abundance is quite uncertain. The information.
Atmospheric Biomarkers (in extrasolar planets) Nick Cowan UW Astronomy December 2005.
Global Energy Balance Te/KTm/KTsurf/K Venus Earth Mars [Jupiter ]
1 Lecture 17: How to Find Life on Exoplanets: Biosignatures.
METO 637 Lesson 23. Titan A satellite of Jupiter. Titan has a bulk composition of about half water ice and half rocky material. Although similar to the.
Extrasolar Planets Z:\exo\presentations\EGS2001_exo.ppt, :54AM, 1 Tidal interactions of close-in extrasolar planets with their host stars.
Dr. David Crisp (Jet Propulsion Laboratory/California Institute of Technology Dr. Victoria Meadows (California Institute of Technology) Understanding the.
Searching for Life Beyond The Solar System Dr. Victoria Meadows NASA Astrobiology Institute Spitzer Science Center/California Institute of Technology.
Dr. David Crisp (Jet Propulsion Laboratory/California Institute of Technology Dr. Victoria Meadows (California Institute of Technology) Understanding the.
Norio Narita (NAOJ Fellow) Special Thanks to IRD Transit Team Members
Biosignatures: Alien’s View of Earth ASTR 1420 Lecture : 18 Section: Not from the textbook.
Lecture 34. Extrasolar Planets. reading: Chapter 9.
December 14, 2001MISU Page 1 DARWIN D etecting & A nalysing R emote W orlds through I nterferometric N ulling a vessel.
Nigel J Mason Physics & Astronomy The Open University, UK.
Inhabited exomoon by artist Dan Durda. Imagine a terrestrial-type exomoon orbiting a Jovian-type planet within the habitable zone of a star. This exomoon.
Evolution of primary planetary atmospheres Philip von Paris 1), John Lee Grenfell 1), Pascal Hedelt 1), Heike Rauer 1,2), Barbara Stracke 1) 1) Institut.
 Venus – the Queen of Greenhouse Dmitriy Titov Max-Planck Institute for Solar System Research ESAC, Spain 27 April 2010.
1 An emerging field: Molecules in Extrasolar Planets Jean Schneider - Paris Observatory ● Concepts and Methods ● First results ● Future perspectives.
Biosignatures: Alien’s View of Earth ASTR 1420 Lecture : 19 Section: Not from the textbook.
Physics of the Atmosphere II
500K planet at 1.0, 0.5, 0.3 AU around a G2V Barman et al. (ApJ 556, 885, 2001)
General Circulation Modelling on Triton and Pluto
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Water Vapour & Cloud from Satellite and the Earth's Radiation Balance
Observing Venus as a transiting exoplanet David Ehrenreich Astronomical School of Odessa.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
S5P tropical tropospheric ozone product based on convective cloud differential method Klaus-Peter Heue, Pieter Valks, Diego Loyola, Deutsches Zentrum für.
Dr. David Crisp (Jet Propulsion Laboratory/California Institute of Technology Dr. Victoria Meadows (California Institute of Technology) Understanding the.
Spectroscopy and Radiative Transfer – Application to Martian atmosphere Helen Wang Smithsonian Astrophysical Observatory April 2012.
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
1 Atmospheric Radiation – Lecture 13 PHY Lecture 13 Remote sensing using emitted IR radiation.
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Navigator Program Exploring New Worlds Exoplanet.
Searching for Life FYOS. = feature whose presence or abundance can be attributed to life Biomarkers (=biosignatures)
Quick Review of Remote Sensing Basic Theory Paolo Antonelli SSEC University of Wisconsin-Madison Monteponi, September 2008.
Ch.22 Atmosphere. Composition 78% nitrogen 21% oxygen 0.9% argon 0.1&other gasses.
Characterisation of hot Jupiters by secondary transits observed with IRIS2 Lucyna Kedziora-Chudczer (UNSW) George Zhou (Harvard-Smithsonian CfA) Jeremy.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Terrestrial Planet Finder - Coronagraph
Exoplanet Studies / Terrestrial Planets in Habitable Zones Ed Turner Princeton University Observatory Institute for the Physics and Mathematics of the.
Advantages and Strategies for Direct Imaging and Characterization of Exoplanets: 5-minute Summary Wesley A. Traub Jet Propulsion Laboratory, California.
Latest Results of HDAC analysis
HDAC analysis: Hydrogen in Titan‘s exosphere
ELECTROMAGNETIC RADIATION
MHD planet simulations
The Properties of Stars
Satellite Remote Sensing of Ozone-NOx-VOC Sensitivity
Space-based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions Randall Martin Aaron Van Donkelaar Arlene Fiore.
Final results of HDAC analysis
SPICA for Transiting Exoplanets: Which SPICA instruments are useful?
A Unified Radiative Transfer Model: Microwave to Infrared
By Narayan Adhikari Charles Woodman
Search for Life on Exoplanets
Astro 18 – Section Week 2 EM Spectrum.
The Properties of Stars
Presentation transcript:

Spectral appearance of terrestrial exoplanets P. Hedelt1, H. Rauer1,2, L. Grenfell1, B. Stracke1, R. Titz1, P. von Paris1 1 Institut für Planetenforschung Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) 2 Zentrum für Astronomie und Astrophysik Technische Universität Berlin 20.09.2007

Aims & Scope Future satellite missions (DARWIN, TPF) will detect terrestrial exoplanets Emission/transmission spectra will be measured An Earth “twin” is highly unlikely… … need for a parameter study to classify terrestrial exoplanets help in examining atmospheres explicitly search for biomarker signals define suitable wavelength intervals for future missions  Construction of a spectral catalogue

Parameter-Variation Surface pressure  Mass of atmosphere Gravitation  Mass & Radius of planet Atmospheric composition Age Stellar luminosity Distance to star Stellar type 7 dimensional parameter space - other planetary and geological parameters not yet considered: Vegetation, Land/ocean distribution, Rotation, Ice coverage, …

Parameters considered so far Literature: Spectral evolution of an earthlike planet: Kaltenegger et al. 2007 Spectra for earthlike planets around different types of stars: Segura et al. 2003 Spectra for varied abundances, using fixed T profile: Des Marais et al. 2002 This work: Background atmosphere Surface Pressure Gravity [g] Composition Stellar parameters a [AU] Age [Gyr] 1 N2/O2 1 – 10 bar Earthlike S0, G2 Present 2 1 bar F2/G2/K2 0.5 - 1.6 3 0.2 – 3.9 4 CO2 1 – 2 bar 0.38 75% CO2 0.75 S0, G2 1.52 3.8 5 75% -95% CO2

Atmospheric Models 1D coupled photochemical, radiative-convective model (Segura et al. 2003, Grenfell et al. 2007) IR radiative transfer scheme: RRTM („Rapid Radiative Transfer Model“, Mlawer et al. 1997) Validated for present earth conditions 1D radiative-convective model IR radiative transfer scheme: MRAC („Modified RRTM for Application in CO2-dominated atmospheres“, von Paris et al., 2007, submitted) Validated for dense atmospheres, high CO2

Radiative Transfer Model SQuIRRL (Schreier and Böttger, 2001): „Schwarzschild Quadrature InfraRed Line-by-line“ Line-by-line radiative transfer model Cloud and haze free No scattering Assumes LTE HITRAN/HITEMP-Database (Rothman et al., 2005)

Pressure variation: N2/O2 dominated atmospheres 1 bar 2 bar 5 bar 10 bar T inversion: 10 bar T inversion: 1 bar Ozone layer becomes thicker T inversion layer moves upwards

Pressure variation N2/O2 dominated atmospheres: Coupled photochemical, radiative-convective model; 78% N2, 21% O2, 355 ppm CO2 CO2: 4.3 µm H2O: 6.3 µm CH4: 7.7 µm O3: 8.8 µm O3: 9.6 µm CO2: 10 µm O3: 13.9 µm CO2: 15 µm H2O: rotation 1 bar 5 bar 10 bar CH4 masked O3 not well-mixed Temperature inversion O3 not well-mixed

Pressure variation N2/O2 dominated atmospheres: Coupled photochemical, radiative-convective model; 78% N2, 21% O2, 355 ppm CO2 O3 O3 + CO2 1 bar 5 bar 10 bar Ozone distribution determineable using 9.6µm and 14µm band Temperature structure determinable using 9.6µm and 15µm band 15µm CO2 band not sensitive to pressure Ozone visible in 8.8µm band at high surface pressure

Stellar Type Variation N2/O2 dominated atmospheres: F2V G2V K2V F2V: More O3 in stratosphere due to increased O2 dissociation F2V: Higher T in stratosphere K2V: Weak inversion layer For more details see Grenfell et al. (2007)

Stellar Type Variation N2/O2 dominated atmospheres: Coupled photochemical, radiative- convective model; 78% N2, 21% O2, 355 ppm CO2 Radiance [W/m2/sr/µm] F2V G2V K2V Wavelength [µm]  Model validated with Segura et al. (2003) Segura et al. (2003)

Stellar Type Variation N2/O2 dominated atmospheres: CO2: 15µm Coupled photochemical, radiative- convective model; 78% N2, 21% O2, 355 ppm CO2 F2V G2V K2V Segura et al. (2003)  Effect of temperature inversion

Gravity variation N2/O2 dominated atmospheres: Ansatz: Fixing surface pressure, increasing g psurf =1 bar, no O3 : 0.2 g : 1 g : 3.9 g

Gravity variation N2/O2 dominated atmospheres: Radiative-convective model; 1 bar; 78% N2, 21% O2, 355 ppm CO2 CO2: 4.3 µm H2O: 6.3 µm band : 0.2 g : 1 g : 3.9 g

Gravity variation N2/O2 dominated atmospheres: Radiative-convective model; 1 bar; 78% N2, 21% O2, 355 ppm CO2 CO2 15 µm band 0.2 g 1 g 3.9 g 15µm CO2 absorption not sensitive to gravity / atmospheric mass Weak temperature inversion

Pressure and CO2 variation CO2 dominated atmospheres: Early Mars 1 bar, 75% CO2 1 bar, 90% CO2 1 bar, 95% CO2 3 bar, 75% CO2 2 bar, 75% CO2 1 bar, 75% CO2  Weak effect on temperature structure

Mixing ratio variation CO2 dominated atmospheres: Early Mars Radiative-convective model CO2 15 µm band 75% CO2, 1 bar 95% CO2, 1 bar

Pressure variation CO2 dominated atmospheres: Early Mars Radiative-convective model CO2 15 µm band 75% CO2, 1 bar 75% CO2, 2 bar 15µm CO2 absorption not sensitive to mixing ratio 15µm CO2 absorption sensitive to surface pressure Temperature structure visible in 15µm band

Summary N2/O2 dominated atmospheres Temperature information from 9.6µm and 15µm band Ozone distribution visible in 14µm band Ozone visible in 8.8µm band at high surface pressures Ozone distribution clearly visible in 9.6µm band CO2 dominated atmospheres Saturated lines prevent CO2 mixing ratio determination Surface pressure visible in 15µm band Need for high resolution measurements in more than one absorption band to characterize the atmosphere of a terrestrial planet

Future work Search for sensitive lines/absorption bands Construct catalogue Apply photochemistry models to all calculations Vary more parameters

N2/O2 dominated atmospheres: Pressure variation – spectrum Coupled photochemical, radiative-convective model; 78% N2, 21% O2, 355 ppm CO2 1 bar 2 bar 5 bar 10 bar CO2: 4.3 µm H2O: 6.3 µm CH4: 7.7 µm O3: 8.8 µm O3: 9.6 µm CO2: 10 µm O3: 14 µm CO2: 15 µm H2O: rotation 1 bar 5 bar 10 bar T inversion: 10 bar T inversion: 1 bar CH4 masked O3 not well-mixed Temperature inversion CO2 well-mixed O3 not well-mixed

N2/O2 dominated atmospheres: Stellar Type Variation - spectrum Coupled photochemical, radiative- convective model; 78% N2, 21% O2, 355 ppm CO2 Radiance [W/m2/sr/µm] F2V G2V K2V Segura et al. (2003) Wavelength [µm] For more details see Grenfell et al. (2007)