CHAPTER 5 The Schrodinger Eqn.

Slides:



Advertisements
Similar presentations
Introduction to Quantum Theory
Advertisements

1 Chapter 40 Quantum Mechanics April 6,8 Wave functions and Schrödinger equation 40.1 Wave functions and the one-dimensional Schrödinger equation Quantum.
PHY 102: Waves & Quanta Topic 14 Introduction to Quantum Theory John Cockburn Room E15)
1 Recap T.I.S.E  The behaviour of a particle subjected to a time-independent potential is governed by the famous (1-D, time independent, non relativisitic)
CHAPTER 6 Quantum Mechanics II
Ch 9 pages ; Lecture 21 – Schrodinger’s equation.
CHAPTER 6 Quantum Mechanics II
6.1The Schrödinger Wave Equation 6.2Expectation Values 6.3Infinite Square-Well Potential 6.4Finite Square-Well Potential 6.5Three-Dimensional Infinite-Potential.
Unbound States 1. A review about the discussions we have had so far on the Schrödinger equation. 2. Quiz Topics in Unbound States:  The potential.
Monday, Oct. 22, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Monday, Oct. 22, 2012 Dr. Jaehoon Yu Infinite Potential.
To understand the nature of solutions, compare energy to potential at  Classically, there are two types of solutions to these equations Bound States are.
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
Bound States 1. A quick review on the chapters 2 to Quiz Topics in Bound States:  The Schrödinger equation.  Stationary States.  Physical.
Ch 9 pages Lecture 22 – Harmonic oscillator.
Wednesday, April 8, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, April 8, 2015 Dr. Jaehoon Yu Expectation.
Wednesday, Oct. 30, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Wednesday, Oct. 30, 2013 Dr. Jaehoon Yu Infinite.
Physics Lecture 15 10/29/ Andrew Brandt Wednesday October 29, 2014 Dr. Andrew Brandt 0. Hw’s due on next 3 Mondays, test on Nov Wells+Barriers.
Young/Freeman University Physics 11e. Ch 40 Quantum Mechanics © 2005 Pearson Education.
Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.
Topic 5: Schrödinger Equation
Bound States Review of chapter 4. Comment on my errors in the lecture notes. Quiz Topics in Bound States: The Schrödinger equation. Stationary States.
Chapter 41 1D Wavefunctions. Topics: Schrödinger’s Equation: The Law of Psi Solving the Schrödinger Equation A Particle in a Rigid Box: Energies and Wave.
Physics 451 Quantum mechanics I Fall 2012 Sep 12, 2012 Karine Chesnel.
Research quantum mechanical methods of bioobjects.
PHYS 3313 – Section 001 Lecture #18
Chapter 5: Quantum Mechanics
Physical Chemistry III (728342) The Schrödinger Equation
Introduction to Quantum Mechanics
Monday, Nov. 4, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, Nov. 4, 2013 Dr. Jaehoon Yu Finite Potential.
LECTURE 17 THE PARTICLE IN A BOX PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
CHAPTER 6 Quantum Mechanics II
Modern Physics lecture 4. The Schroedinger Equation As particles are described by a wave function, we need a wave equation for matter waves As particles.
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite.
量子力學導論 Chap 1 - The Wave Function Chap 2 - The Time-independent Schrödinger Equation Chap 3 - Formalism in Hilbert Space Chap 4 - 表象理論.
1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces Matrix Mechanics In 1927 he derives uncertainty principles Late 1925:
Review for Exam 2 The Schrodinger Eqn.
Finite Potential Well The potential energy is zero (U(x) = 0) when the particle is 0 < x < L (Region II) The energy has a finite value (U(x) = U) outside.
Review for Exam 2 The Schrodinger Eqn.
CHAPTER 6 Quantum Mechanics II
Solutions of Schrodinger Equation
CHAPTER 5 The Schrodinger Eqn.
Chapter 40 Quantum Mechanics
UNIT 1 Quantum Mechanics.
CHAPTER 6 Quantum Mechanics II
Schrödinger Representation – Schrödinger Equation
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
Unbound States A review about the discussions we have had so far on the Schrödinger equation. Topics in Unbound States: The potential step. Two steps:
CHAPTER 5 The Schrodinger Eqn.
 Heisenberg’s Matrix Mechanics Schrödinger’s Wave Mechanics
Quantum Physics Schrödinger
CHAPTER 6 Quantum Mechanics II
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
Chapter 40 Quantum Mechanics
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #20
Particle in a Box.
Physics Lecture 13 Wednesday March 3, 2010 Dr. Andrew Brandt
Shrödinger Equation.
Concept test 14.1 Is the function graph d below a possible wavefunction for an electron in a 1-D infinite square well between
Particle in a box Potential problem.
More Quantum Mechanics
CHAPTER 3 PROBLEMS IN ONE DIMENSION Particle in one dimensional box
PHYS 3313 – Section 001 Lecture #19
More About Matter Waves
Chapter 40 Quantum Mechanics
PHYS 3313 – Section 001 Lecture #18
PHYS 3313 – Section 001 Lecture #20
Presentation transcript:

CHAPTER 5 The Schrodinger Eqn. 5.1 The Schrödinger Wave Equation 5.2 Expectation Values 5.3 Infinite Square-Well Potential 5.4 Finite Square-Well Potential 5.5 Three-Dimensional Infinite- Potential Well 5.6 Simple Harmonic Oscillator 5.7 Barriers and Tunneling http://nobelprize.org/physics/laureates/1933/schrodinger-bio.html Erwin Schrödinger (1887-1961) Homework due next Wednesday Sept. 30th Read Chapters 4 and 5 of Kane Chapter 4: 2, 3, 5, 13, 20 problems Chapter 5: 3, 4, 5, 7, 8 problems

Stationary States The wave function can now be written as: The probability density becomes: The probability distribution is constant in time. This is a standing-wave phenomenon and is called a stationary state. Most important quantum-mechanical problems will have stationary-state solutions. Always look for them first.

Operators The time-independent Schrödinger wave equation is as fundamental an equation in quantum mechanics as the time-dependent Schrödinger equation. So physicists often write simply: where: is an operator yielding the total energy (kinetic plus potential energies).

Operators Operators are important in quantum mechanics. All observables (e.g., energy, momentum, etc.) have corresponding operators. The kinetic energy operator is: Other operators are simpler, and some just involve multiplication. The potential energy operator is just multiplication by V(x).

Momentum Operator To find the operator for p, consider the derivative of the wave function of a free particle with respect to x: With k = p / ħ we have: This yields: This suggests we define the momentum operator as: . The expectation value of the momentum is:

Position and Energy Operators The position x is its own operator. Done. Energy operator: Note that the time derivative of the free-particle wave function is: Substituting w = E / ħ yields: This suggests defining the energy operator as: The expectation value of the energy is:

Deriving the Schrödinger Equation using operators The energy is: Substituting operators: E : K+V :

Operators and Measured Values In any measurement of the observable associated with an operator A, the only values that can ever be observed are the eigenvalues. Eigenvalues are the possible values of a in the Eigenvalue Equation: ˆ where a is a constant and the value that is measured. For operators that involve only multiplication, like position and potential energy, all values are possible. But for others, like energy and momentum, which involve operators like differentiation, only certain values can be the results of measurements. In this case, the function Y is often a sum of the various wave function solutions of Schrödinger’s Equation, which is in fact the eigenvalue equation for the energy operator.

Solving the Schrödinger Equation when V is constant. Rearranging: When V0 > E: where: Because the sign of the constant a2 is positive, the solution is: Sometimes people use: When E > V0: where: Because the sign of the constant -k2 is negative, the solution is:

Infinite Square-Well Potential Consider a particle trapped in a box with infinitely hard walls that the particle cannot penetrate. This potential is called an infinite square well and is given by: L x Outside the box, where the potential is infinite, the wave function must be zero. Inside the box, where the potential is zero, the energy is entirely kinetic, E>V0 So, inside the box, the solution is: Taking A and B to be real. where

Quantization and Normalization Boundary conditions dictate that the wave function must be zero at x = 0 and x = L. This yields solutions for integer values of n such that kL = np. The wave functions are: x L The same functions as those for a vibrating string with fixed ends! ½ - ½ cos(2npx/L) In QM, we must normalize the wave functions: The normalized wave functions become:

Quantized Energy We say that k is quantized: Solving for the energy yields: The energy also depends on n. So the energy is also quantized. The special case of n = 1 is called the ground state.

Finite Square-Well Potential Assume: E < V0 The finite square-well potential is: The solution outside the finite well in regions I and III, where E < V0, is: Realizing that the wave function must be zero at x = ±∞.

Finite Square-Well Solution (continued) Inside the square well, where the potential V is zero, the solution is: Now, the boundary conditions require that: So the wave function is smooth where the regions meet. Note that the wave function is nonzero outside of the box!

The particle penetrates the walls! This violates classical physics! The penetration depth is the distance outside the potential well where the probability decreases to about 1/e. It’s given by: Note that the penetration distance is proportional to Planck’s constant.

Barriers and Tunneling Consider a particle of energy E approaching a potential barrier of height V0, and the potential everywhere else is zero and E > V0. In all regions, the solutions are sine waves. In regions I and III, the values of k are: In the barrier region: