New AD Production Beam in the PSB

Slides:



Advertisements
Similar presentations
Measurements of adiabatic dual rf capture in the SIS 18 O. Chorniy.
Advertisements

LONGITUDINAL (IN)STABILITY WITH BATCH INJECTION T. Argyropoulos, P. Baudrenghien, C. Bhat, J. E. Muller, T. Mastoridis, G. Papotti, E. Shaposhnikova,
Expected performance in the injectors at 25 ns without and with LINAC4 Giovanni Rumolo, Hannes Bartosik and Adrian Oeftiger Acknowledgements: G. Arduini,
Bunch Merging at 24 GeV Goal: 16 Tp per bunch The scheme Set-up problems Result Future work to increase bunch intensity.
Masahito TOMIZAWA and Satoshi MIHARA Accelerator and proton beam.
Longitudinal motion: The basic synchrotron equations. What is Transition ? RF systems. Motion of low & high energy particles. Acceleration. What are Adiabatic.
Thomas Roser Muon collaboration meeting February 8-10, 2002 AGS beam intensity upgrades What has been achieved Sextupole power supply upgrades Bunch manipulation.
PSB magnetic cycle 160 MeV to 2 GeV with 2.5E13 protons per ring A. Blas 2 GeV magnetic cycle 29/04/ Requirements 1.Present performance: 1E13p from.
Preliminary results and ideas for the SPS upgrade MDs on LHC beams in 2011 G. Rumolo on behalf of all the MD team (Elena, Thomas, Karel, Christina, Holger,
22/03/1999A.Blas1 Hollow bunches A. Blas, S. Hancock, S. Koscielniak, M. Lindroos, F. Pedersen, H. Schonauer  Why: to improve space charge related problems.
Production of a Safe Drive Beam The Drive Beam pulse Which bunch goes where How to get rid of undesired bunches General Principle Operational Scenarios.
First measurements of longitudinal impedance and single-bunch effects in LHC E. Shaposhnikova for BE/RF Thanks: P. Baudrenghien, A. Butterworth, T. Bohl,
H. Bartosik, K. Cornelis, A. Guerrero, B. Mikulek, G. Rumolo, Y. Papaphilippou, B. Salvant, E. Shaposhnikova June 16 th, 2011.
Booster Beam Dynamics Christian Carli On behalf of the team working on and contributing to the study: M. Aiba did all ORBIT simulations (Booster modelling.
History and motivation for a high harmonic RF system in LHC E. Shaposhnikova With input from T. Argyropoulos, J.E. Muller and all participants.
AAC February 4-6, 2003 Protons on Target Ioanis Kourbanis MI/Beams.
Collected by E. Jensen, BE-RF 1 ATOP days RF limitations.
HL-LHC/LIU Joint workshop Goal: Progressing towards an agreed set of 450 GeV beam parameters for High Luminosity operation in LHC after LS2 & LS3. Slides.
Recent RF Development at Fermilab Weiren Chou and Akira Takagi Fermilab, U.S.A. July 7, 2003 Presentation to the FFAG03 Workshop July 7-12, 2003, KEK.
F 1 MW Proton Beam for Neutrinos Dave McGinnis AAC Meeting May 10, 2006.
0 1 Alternative Options in the Injectors – Preliminary Summary H. Damerau LIU-TM#8 18 October 2013 Many thanks for discussions and input to T. Argyropoulos,
Production of bunch doublets for scrubbing of the LHC J. Esteban Muller (simulations), E. Shaposhnikova 3 December 2013 LBOC Thanks to H. Bartosik, T.
RF System for HESR Status report, January 2006 F. Etzkorn / A. Schnase, with help from S. An, K. Bongardt.
Overview of Booster PIP II upgrades and plans C.Y. Tan for Proton Source group PIP II Collaboration Meeting 03 June 2014.
Some ideas for/from the SPS LIU-SPS team. Scrubbing (only) for ecloud in SPS? aC coating remains baseline..... –but scrubbing has many potential advantages.
Early Beam Injection in the Fermilab Booster & its Implementation Plan Chandra Bhat Todd’s Operation Meeting /12/2015 Chandra Bhat Abstract:
News on TMCI in the SPS: Injecting high intensity bunches Benoit for the MD team: T. Bohl, K. Cornelis, H. Damerau, W. Hofle, E. Metral, G. Rumolo, B.
SPS proton beam for AWAKE E. Shaposhnikova 13 th AWAKE PEB Meeting With contributions from T. Argyropoulos, T. Bohl, H. Bartosik, S. Cettour.
Barrier RF Stacking Weiren Chou and Dave Wildman Fermilab, U.S.A. October 20, 2004 Presentation at the Proton Driver Session ICFA-HB2004, Bensheim, Germany,
LER Workshop, Oct 11, 2006Intensity Increase in the LER – T. Sen1 LHC Accelerator Research Program bnl-fnal-lbnl-slac  Motivation  Slip stacking in the.
Beam loss and radiation in the SPS for higher intensities and injection energy G. Arduini 20 th November 2007 Acknowledgments: E. Shaposhnikova and all.
Longitudinal Painting S. Hancock p.p. G. Feldbauer.
Longitudinal aspects on injection and acceleration for HP-PS Antoine LACHAIZE On behalf of the HP-PS design team.
ELENA RF Manipulations S. Hancock. Apart from debunching before and rebunching after cooling, the principal role of the rf is to decelerate the beam and.
MTE commissioning status S. Gilardoni, BE/ABP With C. Hernalsteens and M. Giovannozzi.
Update on RF parameters A.Lachaize11 th HPPS design meeting04/09/13.
HP-PS beam acceleration and machine circumference A.LachaizeLAGUNA-LBNO General meeting Paris 18/09/13 On behalf of HP-PS design team.
RF manipulations in SIS 18 and SIS 100 O. Chorniy.
L4-PSB working group meeting 25/06/2009
Impact of the current debuncher limitations (…can we get rid of longitudinal painting?)
Alternative/complementary Possibilities
Alternative/complementary Possibilities
Plans for ions in the injector complex D
Space charge studies at the SPS
Longitudinal beam parameters and stability
Tomography at Injection in the PSB
Acknowledgments: LIU-PT members and deputies, H. Bartosik
PSB rf manipulations PSB cavities
PSB Injection scheme in the Linac 4 era
Multiturn extraction for PS2
Week 46 Week 46: Machine coordinators: Roger Bailey – Gianluigi Arduini Main aims of the week: Stable beams with ions Scheduled stop for ion source refill.
The SPS 800 MHz RF system E. Shaposhnikova for BE/RF
The LHC25ns cycle in the PS Triple splitting after 2nd injection
PSB magnetic cycle 160 MeV to 2 GeV
Introduction to LHC beam production in PSB and PS
News on TMCI in the SPS: Injecting high intensity bunches
Beam dynamics requirements after LS2
PSB magnetic cycle 160 MeV to 2 GeV with 2.5E13 protons per ring
DEMONSTRATION OF TRIPLE BUNCH SPLITTING IN THE CERN PS
Generation of Higher Brightness Beams for LHC
Tue/Wed 12/ :00 Probe beam back again
Collective effects in the SPS and LHC (longitudinal plane)
Summary of session 9: "LHC Injectors Upgrade"
PSB rf Foreseen limitations with 2 E13 p at 2 GeV
PSB magnetic cycle 900 ms MeV to 2 GeV
PSB – Linac 4 Interfacing
PSB rf Power limitations with Linac4
JLEIC ion fullsize booster (2256m) space charge limit (Δν=0
Updated MEIC Ion Beam Formation Scheme
JLEIC Ion Beam Formation options for 200 GeV
Presentation transcript:

New AD Production Beam in the PSB Until now, four h=1 bunches were ejected toward the PS in a single batch. New proposal (F. Pedersen): provide 5 bunches; either in a single or a double batch PS filling scheme. Aim: fill all the 5 available AD buckets instead of just 4 to increase the amount of delivered antiprotons. APC 25/4/08 Alfred Blas AB-RF-FB

New AD Production Beam in the PSB The production of 5 bunches in 2 PSB batches will not be discussed in this presentation as it doesn’t really affect the PSB operation. Note that the first batch in the PS, waiting for the second might experience a transverse blow-up due to space charge effects. This dilution would have a negative effect on the antiprotons production on the AD target that has not been quantified. The production of 5 bunches in 1 PSB batch having 3 rings with a single bunch on h=1 and 1 ring with 2 bunches on h=2 will be discussed. APC 25/4/08 Alfred Blas AB-RF-FB

New AD Production Beam in the PSB 3 rings on h=1 and 1 ring on h=2 with the double intensity; all bunches should be identical but transversally, the multi-turn injection induces more emittance when the number of turns (intensity) is increased (normalized 2σ values: 55 μm instead of 30 μm in H and 50 μm instead of 20 μm in V; wire scanner measurements). This aspect and its impact on the final antiprotons production should be quantified (not done in this presentation) Up to the flat-top all rings are operated the same way At the flat-top only one ring would undergo a splitting process from 1 to 2 bunches (=> C02 voltage drop, C04 voltage increase, C16 blow-up, End dual harmonic loop, Start C04 phase loop, End C02 phase loop) For the synchronization, a dedicated rf switch should provide the h2 reference to the h=2 ring. For this operation 4 new timing pulses and 1 rf switching unit need to be supplied APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Present AD beam PSB extraction h=1 Trev = 572 ns 5 turns injected Tbunch = 215ns 8 kV / h = 1 1 kV h=2 @180o Blow-up active 400.1010 p/bunch emittance = 1.72 eV.s APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Present AD beam Blow-up cavity APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Present AD beam Synchronization phases APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Present AD beam Transfer line APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Present AD beam Transfer line For a proper filling of the h=8 buckets in the PS and for letting enough room for the recombination kicker rise time in between bunches, The bunch length should be limited to 191 ns (1-99 % rise time) BTKFA10 and BTKFA20 rise time (2-98)% = 88 ns (1-99)% = 95 ns APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Present CNGS h=2 beam Vh2 = 8 kV Vh1 = 0.5 kV 750.1010 p Tbunch = 183 ns Trf = 286 ns 375.1010 p/bunch Emittance = 1.61 eV.s APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Present CNGS h=2 beam APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB How to create a h=2 matched beam? First the blow-up should be such as to make each 2 bunches emittance equal to the h=1 bunch emittance. Compared to the present CNGS beam, the blow-up should be increase to obtain 7% more emittance. Second, the h=2 voltage should be set (Vh2 = 6.8 kV when Vh1 = 8 kV) so that all h=1 and h=2 bunches have the same length. Beam Emittance per bunch Bunch length h / V Bucket area AD 1.72 eV.s 216 ns (198 ns calculated) 1 / 8 kV 7.27 eV.s Present CNGS 1.61 eV.s 183 ns (179 ns calculated) 2 / 8 kV 2.56 eV.s CNGS (extrapolated) 198ns calculated 2 / 6.8 kV 2.36 eV.s APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Other possibility for the h=2 beam creation: Debunching and Recapture This operation would require the acceleration of a high intensity h=1 beam, with a strong blow-up (some more than for the CNGS beam) to obtain a total 3.4 eV.s beam emittance. This blow-up should be operated after the maximum Bdot (205 ms before the flat-top) to avoid losses due to bucket overfilling. On the flat top, the beam should be debunched and re-captured on h=2 up to the voltage of 6.8 kV. The beam should then be synchronized. All this should occur within the 40 ms of the flat-top. Using: for the debunching time constant (yellow book) One gets: tdb = 62 μs (quite small; to be checked) This gives us plenty of time for a proper adiabatic debunching and recapture Instabilities in the transverse plane with debunched beam to be checked! APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB PS h=10 scenario Filling h=10 instead of h=8 buckets in the PS has the following impact: The bunch spacing in the transfer line becomes 229 ns (h=10 rf period) instead of 286 ns. Considering the kicker rise time of 95 ns, this leaves only 134 ns for the bunch length With h=1 at 8 kV and a bunch length of 134 ns, the beam emittance equals 0.75 eV.s instead of 1.72 eV.s in the h=8 scenario. This value is lower than the present 0.9 eV.s of the injected Linac beam. As presently the bunch length is 216 ns on the AD beam when the calculated limit is 191 ns, there seem to be a margin that would allow to create h=1 bunches without blow-up as the intensity is limited (4. 1012 p) Concerning the h=2 pair of bunches, there might be a lot of difficulties to achieve a bunch splitting at high intensity with such a little emittance. A stable splitting requires a well filled bucket, which can be obtained by lowering the rf voltages at the price of being faced to cavity parasitic beam loading effects. Note that there are no operational high intensity beam created without blow-up (robustness issues). Note that there should be a remaining h=1 voltage on the splitted beam to insure the required bunch spacing which is smaller than the rf h=2 period. The longitudinal matching issue with such a bucket should be considered. If the splitting cannot be achieved, the debunching-rebunching operation can be envisaged with the question marks invoked above and also the difficulty of having to add a h=1 phase locked voltage to create the proper bunch spacing. The synchronization would occurs on the h=1 component of the splitted beam. This has never been tried, but a-priori should not be a problem. APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Conclusion The required investment in the PSB to provide 5 bunches to the PS on h=8 and in a single batch should be low. The hardware changes require 3 man-day work and 0 CHF The setting-up time, from the operation point of view, should be limited (copy of AD for 3 rings and slightly modified CNGS settings for the remaining ring) Beam debunching and recapture on h=2 might be an alternative solution to the splitting although there are some question marks about the degrouping time and the transverse stability. Feeding the PS on h=10 present more operational uncertainties related to rf gymnastics with a low emittance beam. These aspects need more study before this operation type can be proposed. The AD target efficiency goes down with increased transverse emittances and the higher the intensity in one ring, the higher the transverse emittance due to the multi-turn injection process. This aspect has not been checked yet. Thanks to M. Chanel, T. Eriksson, A. Findlay, S. Hancock for sharing their knowledge APC 25/4/08 Alfred Blas AB-RF-FB

APC 25/4/08 Alfred Blas AB-RF-FB Annex: slide from M. Chanel For the AD beam (total 1.6 1013 on target), the PSB should accelerate 450 1010/ring. To add one bunch more on target, one PSB ring should accelerate 900 1010at least. The beam density increases from 38 to 50 1010/mm.mrad(+32%)and the emittances from (eh,ev)=(16,7.5) to (24,14) pmm.mrad. If all the particles are on target, it will increase the production by 8% for a 20% increase of beam intensity! APC 25/4/08 Alfred Blas AB-RF-FB