Phenomenology of Twin Higgs Model

Slides:



Advertisements
Similar presentations
THE FINE-TUNING PROBLEM IN SUSY AND LITTLE HIGGS
Advertisements

What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
1 Higgs Mechanism Cyril Topfel. 2 What to expect from this Presentation (Table of Contents) Some very limited theory explanation Higgs at.
26th Rencontres de Blois, Particle Physics and Cosmology, 2014 BSM Higgs Searches at the LHC C. H. Shepherd-Themistocleous PPD, Rutherford Appleton Laboratory.
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Little Higgs Model Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) KIAS-NCTS Joint Workshop High-1 2/9 – 2/15 In collaboration.
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
Signatures of a new vector resonance from strongly interacting electroweak symmetry breaking M. Gintner, I. Melo, B. Trpišová University of Žilina Exotics.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
Jose E. Garcia presented by: Jose E. Garcia (IFIC-Valencia) on behalf of ATLAS Collaboration XXXIXth Rencontres de Moriond.
Associated production of the Higgs boson and a single top quark in the littlest Higgs model at Large Hadron Collier Shuo Yang.
Center for theoretical Physics at BUE
Little Higgs Dark Matter & Its Collider Signals ・ E. Asakawa, M. Asano, K. Fujii, T. Kusano, S. M., R. Sasaki, Y. Takubo, and H. Yamamoto, PRD 79, 2009.
A Composite Little Higgs ZACKARIA CHACKO UNIVERSITY OF MARYLAND, COLLEGE PARK Puneet Batra.
2. Two Higgs Doublets Model
Takehiro Nabeshima University of Toyama ILC physics general meeting 9 jun Phenomenology at a linear collider in a radiative seesaw model from TeV.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
New Vector Resonance as an Alternative to Higgs Boson (Strong EWSB)
Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez.
1 Determination of Dark Matter Properties in the Littlest Higgs Model with T-parity Masaki Asano (SOKENDAI) Collaborator: E. Asakawa (Meiji-gakuin), S.
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
Report on LHT at the LHC ~ Some results from simulation study ~ Shigeki Matsumoto (Univ. of Toyama) 1.What kinds of LHT signals are expected, and how accurately.
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS Ryuichi Takashima Kyoto University of Education For the ATLAS Collaboration.
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
Report on New Physics Subgroup Activities Nobuchika Okada (KEK) 5th general meeting of the ILC physics working group May 31, KEK Past activities.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Nobuchika Okada The University of Alabama Miami 2015, Fort Lauderdale, Dec , GeV Higgs Boson mass from 5D gauge-Higgs unification In collaboration.
Higgs boson production at LHC as a probe of littlest Higgs models with T-parity Lei Wang ITP LW, J. M. Yang, PRD77, (2008)
Charged Higgs boson at the LHC 이강영 ( 건국대학교 연세대학교
Yasunori Nomura UC Berkeley; LBNL. What do we expect to see at TeV?  Physics of electroweak symmetry breaking Is there New Physics at TeV?  We don’t.
Same-Sign Diletpon Signatures of Vector-like Quarks Chuan-Ren Chen (NTNU) 11/03/2015, CYCU HEP seminar In collaboration with H.-C. Cheng and I. Low, 1511.*****
Same-Sign Diletpon Signatures of Vector-like Quarks Chuan-Ren Chen (NTNU) 11/20/2015, IoP HEP AS In collaboration with H.-C. Cheng and I. Low,
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
Measurements of the model parameter in the Littlest Higgs Model with T-parity 1 Masaki Asano (ICRR, Univ. of Tokyo) Collaborator: E. Asakawa ( Meiji-gakuin.
Measurements of the model parameter in the Littlest Higgs model with T-parity 1 Masaki Asano (ICRR, Univ. of Tokyo) Collaborator: E. Asakawa ( Meiji-gakuin.
We have the Higgs!!! Now What?? Nausheen R. Shah Wayne State University Oct 14, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner arXiv:1510.xxxxx.
New Strong LHC Rogerio Rosenfeld Instituto de Física Teórica UNESP  
Charged Higgs boson decay in supersymmetric TeV scale seesaw model
Determining the CP Properties of a Light Higgs Boson
Nady Bakhet PhD Student – Cairo University PhD Thesis Title
Classically conformal B-L extended Standard Model
The e+e- collider experiments to search for dark matter
Dark Sectors for and anomalies
Lecture 13 Higgs Hunting --- The experimental Perspective
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
Xinyu Miao Department of Physics Univ. of Arizona 03/30/07
The Flavor of a Little Higgs with T-parity
Some Implications Of The Recent LHC Higgs Search Results Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
Phenomenology of Twin Higgs Model
Phenomenology of Twin Higgs Model
Xinyu Miao Department of Physics Univ. of Arizona 03/30/07
The MESSM The Minimal Exceptional Supersymmetric Standard Model
The Graduate University for Advanced Studies Masaki Asano hep-ph/
Shufang Su • U. of Arizona
mSUGRA SUSY Searches at the LHC
浪漫之都大连欢迎您!. 浪漫之都大连欢迎您! Pair production of the scalars from the LRTH model Ma Wei Liaoning Normal University, Dalian Wei Ma, Chong-Xing Yue, Yong-Zhi.
Testing the Standard Model and Beyond
Phenomenology of Twin Higgs Model
Physics beyond the SM in Kaon decays --Theory--
SUSY WIMP and Collider Signatures
Split Two-Higgs Doublet and Neutrino Condensation
Shuo Yang Associated production of the Higgs boson and
Prospects for TeV Scale New Physics at LHC
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Prospect after discoveries of Higgs/SUSY
Search for a New Vector Resonance in the pp WWtt+X Channel at LHC
Presentation transcript:

Phenomenology of Twin Higgs Model Shufang Su • U. of Arizona Hock-Seng Goh, Shufang Su Work in progress

Outline Twin Higgs Model Collider phenomenology Twin Higgs mechanism - Twin Higgs Model Twin Higgs mechanism Left-right Twin Higgs model New particles and model parameters Collider phenomenology Heavy top quark Heavy gauge bosons Higgses S. Su

Twin Higgs mechanism Mirror symmetry Left-right symmetry Higgs as pseudo-Goldstone boson of a global symmetry Its mass is protected against radiative corrections Little Higgs mechanism: collective symmetry breaking Twin Higgs mechanism: discrete symmetry Mirror symmetry Type IA TH: Chacko, Goh, Harnik, hep-ph/0506256 Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/0510273 Left-right symmetry Type II TH: Chacko, Goh, Harnik, hep-ph/0512088 S. Su

SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y Left-right Twin Higgs model - Global U(4) , with subgroup SU(2)L  SU(2)R  U(1)B-L gauged Left-right symmetry: gL=gR (yL=yR) A linear realization SM Higgs doublet EWSB SM neutral Higgs: H 3 eaten by heavy gauge bosons U(4)  U(3) SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y 7 GB S. Su

Twin Higgs mechanism - Quadratic divergence forbidden by left-right symmetry gL=gR=g U(4) invariant, does not contribute to the mass of GB Non-linear realization Log contribution: mH  g2f / (4 ), natural for f  TeV S. Su

Left-right Twin Higgs model Fermion sector: Top quark mass: Top quark mass eigenstates: SM top and tH EW precision constraints on SU(2)R gauge boson mass  f  2 TeV Introduce another Higgs field that only couples to gauge sector Which has a larger VEV S. Su

SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y Left-right Twin Higgs model U(4)  U(4), with gauged SU(2)LSU(2)RU(1)B-L + LR symmetry - Couple to gauge boson only SM Higgs doublet EWSB SM neutral Higgs: H SU(2)L Higgs doublet H1, H20 3 eaten by heavy gauge bosons Left 3 Higgses: neutral Higgs 0, charged Higgs  U(4)  U(3) SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y  U(4)  U(3) 7 GB 7 GB f2  f1 S. Su

New particles Heavy gauge bosons: WH, ZH m2WH,ZH  g2(f12+f22) - Heavy gauge bosons: WH, ZH m2WH,ZH  g2(f12+f22) Heavy top: tH m2TH  M2+y2f12 Other SU(2)R Higgses:  m2  g4/(162)f22 log(/gf2) 0 m20  B (f2/f1) B: small, (50-100 GeV)2 Other SU(2)L Higgs H1 m2H1, H20   H20 : soft symmetry breaking, O(f1) S. Su

Model parameters Model parameters: f1, (f2, y), , M, B,  - Model parameters: f1, (f2, y), , M, B,  Determine particle masses and interactions fixed by Higgs VEV = 4f1 or 2f1 M=150 GeV B=50 GeV  = f1/2 fixed by top quark mass S. Su

Heavy top tH production - single heavy top production heavy top pair production S. Su

Heavy top tH decay 3 b + 1 j + 1 lepton + missing ET j  l t tH W - j W tH  b t l  3 b + 1 j + 1 lepton + missing ET j tH W b l  1 b + 1 j + 1 lepton + missing ET S. Su

Heavy gauge boson production - Drell-Yan process S. Su

ZH decay - ZH 2 b + 2 j + 1 lepton + missing ET t q b W l  ZH S. Su

WH decay WH tH b: 4b + 1 lepton + missing ET - WH tH b: 4b + 1 lepton + missing ET tH bW : 2b + 1 lepton + missing ET tH tZ: 2b + 3 lepton + missing ET S. Su

Higgses SM Higgs mH  150-170 GeV, depending on f1,  and M Higgs searches: gg  H  ZZ*  llll gg  H  WW*  ll WBF  qqH  qqWW*  qqll SU(2)R Higgs: 0,  0  bb j   tb 2b + 1 lepton + missing ET S. Su

0 Neutral Higgs 0 gg  0  bb, QCD background overwhelming - Neutral Higgs 0 gg  0  bb, QCD background overwhelming no W0, Z0 associated production (no such coupling) bb0 , tb0, tt0 cross section small Produced via the decay of heavy particles WH  b t W 0 l  4 b + 1 lepton + missing ET S. Su

 - Neutral Higgs  no W, Z associated production (no such coupling) bb , tb, tt cross section small Produced via the decay of heavy particles j W tH  b t l  3 b + 1 j + 1 lepton + missing ET S. Su

H1, H20 H20: good dark matter candidates - Higgs that couple to gauge boson only: H1, H20 H1H20, H1H1, H20H20, associated production (small) H20 stable : missing energy H1  H20 + soft jets/leptons if decay fast enough: appears as missing energy if decay slow: track ! H20: good dark matter candidates S. Su

M=0 case Top Yukawa: f1 v tH = (TL, tR), mtH = yf1 - Top Yukawa: f1 v tH = (TL, tR), mtH = yf1 tSM = (tL, TR), mt = yv Gauge coupling Yukawa coupling 0  tH  tH 0  t  t 0  tH  t H  t  t H  tH  tH (small) H  tH  t W  t  b W  tH  b WH  t  b WH  tH  b Z  t  t Z  tH  tH Z  tH  t ZH  t  t ZH  tH  tH ZH  tH  t   tH  b   t  b   t + b (100%) X S. Su

 decay No two body decay Leading decay: 3 body - No two body decay Leading decay: 3 body off-shell 0  bb: bbqq final states huge QCD bg H  ZZ*, WW* small signal S. Su

 discovery - Difficult unless   Hqq small signal S. Su

0 discovery - difficult small signal absent S. Su

Heavy top tH discovery single, pair production does not change much. - single, pair production does not change much. decay: only tH  b  (100%) 100% either huge QCD bg Or small signal absent S. Su

Heavy gauge boson discovery - ZH, WH drell-yan cross section does not change ZH: ZH  ll does not change much  Br(ZH  t tH) =0 WH: difficult For M=0 discovery of almost all the particle are difficult except for ZH either huge QCD bg Or small signal absent S. Su

Conclusions - Left-right twin Higgs model: Higgs as pseudo-goldstone boson quadratic divergence forbidden by left-right symmetry New particles Heavy gauge boson: WH, ZH Heavy top quark tH New Higgses: 0, , H1, H20 (DM) M0: rich collider phenomenology M=0: difficult except for ZH Future work Pick certain channel for detailed study: background, cuts,… Identify twin Higgs mechanism Dark matter study Comparison with other models, e.g., little higgs S. Su