Refraction and Lenses AP Physics B.

Slides:



Advertisements
Similar presentations
PHYSICS InClass by SSL Technologies with S. Lancione Exercise-55
Advertisements

Light, Reflection, & Mirrors
Light Lenses.
Created by Stephanie Ingle Kingwood High School
15-1 Refraction.  The bending of a light as it passes at an angle from one medium to another.  Refraction occurs when light changes velocity. Figure.
Law of Reflection (Smooth Surface):
Refraction of Light Chapter 18, Section 1.
Reflection and Refraction of Light
Reflection and Refraction. Reflection  Reflection occurs when light bounces off a surface.  There are two types of reflection – Specular reflection.
Light: Geometric Optics
Geometric Optics The Law of Reflection.
Types of Lenses If you have ever used a microscope, telescope, binoculars, or a camera, you have worked with one or more lenses. A lens is a curved transparent.
WAVES Optics.
Welcome to Optics JEOPARDY PHysics Final Jeopardy Question Reflection Mirrors 100 Lens refraction Special topics.
Reflection & Mirrors.
Ray Diagrams Notes.
Curved Mirrors. Two types of curved mirrors 1. Concave mirrors – inwardly curved inner surface that converges incoming light rays. 2. Convex Mirrors –
Geometric Optics Conceptual MC Questions. If the image distance is positive, the image formed is a (A) real image. (B) virtual image.
Refraction (bending light) Refraction is when light bends as it passes from one medium into another. When light traveling through air passes into the glass.
Chapter 26 Geometrical Optics.
S-95 Explain how a curved mirror, and a curved lens are different. Think in terms of image formation and in terms of what light photons do.
KEYWORDS: refraction, angle of incidence, Angle of refraction, refractive index KEYWORDS: refraction, angle of incidence, Angle of refraction, refractive.
Refraction and Lenses Light bends--so you can see better!
Mirrors and Lenses Chapter 23
Refraction. Optical Density  Inverse measure of speed of light through transparent medium  Light travels slower in more dense media  Partial reflection.
Refraction & Lenses Chapter 18. Refraction of Light n Look at the surface of a swimming pool n Objects look distorted n Light bends as it goes from one.
Conceptual Physics: pp ; Chapter 30.  Refraction-The bending of a wave as it enters a new medium  Medium-The material the wave travels through.
Formation of Images by Spherical Mirrors. For an object infinitely far away (the sun or starts), the rays would be precisely parallel.
Chapter 19 – Optics Jennie L. Borders.
Geometric Optics September 14, Areas of Optics Geometric Optics Light as a ray. Physical Optics Light as a wave. Quantum Optics Light as a particle.
Mirrors & Reflection.
Optics 2: REFRACTION & LENSES. REFRACTION Refraction: is the bending of waves because of the change of speed of a wave when it passes from one medium.
Light refraction.
Ch23 Geometric Optics Reflection & Refraction of Light.
Refraction and Lenses Honors Physics.
Refraction. As the speed of light is reduced in the slower medium, the wavelength is shortened proportionately. The frequency is unchanged; it is a characteristic.
Plane Mirror Suppose we had a flat , plane mirror mounted vertically. A candle is placed 10 cm in front of the mirror. WHERE IS THE IMAGE OF THE CANDLE.
 When light strikes the surface of an object  Some light is reflected  The rest is absorbed (and transferred into thermal energy)  Shiny objects,
Refraction and Lenses.
Optical Density - a property of a transparent medium that is an inverse measure of the speed of light through the medium. (how much a medium slows the.
Lenses – Application of Refraction AP Physics B. Lenses – An application of refraction There are 2 basic types of lenses A converging lens (Convex) takes.
LENSES Lyzinski Physics. Light Speeds When traveling through a vacuum, light travels at 3 x 10 8 m/s. This is the fastest light ever travels. We shall.
Refraction When light passes from one medium to another, it bends.
Textbook sections 26-3 – 26-5, 26-8 Physics 1161: Lecture 17 Reflection & Refraction.
the change of direction of a ray of light as it passes obliquely from one medium into another of different transmission speed Optical Density of a medium.
 Simply put, “Refraction” means bends.  When discussing light beams, light bends when it goes from one medium (glass, water, air, etc.) to another. 
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
THEORIES OF LIGHT Is light a wave or a stream of particles? Let’s first analyze characteristics behaviors of light as a wave: All waves are known to undergo.
Refraction of Light Refraction Refraction –Refraction occurs when light waves traveling from one medium to another with a different density bend. –The.
Light refraction Chapter 29 in textbook.
Index of Refraction. The ratio of the speed of light in vacuum to the speed of light v in a given material is called the index of refraction, n of the.
PHYSICS – Total Internal Reflection and Lenses. LEARNING OBJECTIVES Core Describe the formation of an optical image by a plane mirror, and give its characteristics.
Refraction and Lenses. Refraction is the bending of light as it moves from one medium to a medium with a different optical density. This bending occurs.
Refraction and Lenses. The most common application of refraction in science and technology is lenses. The kind of lenses we typically think of are made.
Refraction of Light Chapter 18, Section 1. Refraction  When light encounters a transparent or translucent medium, some light is reflected from the surface.
LIGHT. PROPERTIES OF LIGHT Light always travels in straight lines. Light always travels at 2.98 x 10 8 ms -1 in air or a vacuum. ( kms -1 ) Light.
Light will refract (change direction) upon entering a new substance. If the new substance is more optically dense, the light will bend toward the normal.
Reflection vs. Refraction Refraction zRefraction of Light: Bend or change direction z1. As light rays enter a new medium the cause light to bend z2.
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
AP Phys 12 – Class Starter 1.Let’s start by reviewing a 2003 AP Question 2.Work in groups of 2-3 to answer the following question… 3.Grab a Whiteboard.
Geometric Optics AP Physics Chapter 23.
Refraction and Lenses.
Lenses – An application of refraction
Refraction and Lenses AP Physics B.
Refraction and Lenses AP Physics B.
Mirrors continued.
Rays, Mirrors, Lenses, and Prisms
Refraction and Lenses Physics.
Refraction and Lenses Honors Physics.
Refraction and Lenses AP Physics B.
Presentation transcript:

Refraction and Lenses AP Physics B

Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach with a certain velocity when you suddenly need to run into the water. What happens to your velocity? IT CHANGES! Refraction Fact #1: As light goes from one medium to another, the velocity CHANGES!

Refraction Suppose light comes from air, which in this case will be considered to be a vacuum, strikes a boundary at some angle of incidence measured from a normal line ,and goes into water. The ratio of the two speeds can be compared. The denominator in this case will ALWAYS be smaller and produce a unitless value greater or equal to 1. This value is called the new medium’s INDEX OF REFRACTION, n. All substances have an index of refraction and can be used to identify the material.

Refraction Suppose you decide to go spear fishing, but unfortunately you aren’t having much luck catching any fish. The cause of this is due to the fact that light BENDS when it reaches a new medium. The object is NOT directly in a straight line path, but rather it’s image appears that way. The actual object is on either side of the image you are viewing. Refraction Fact #2: As light goes from one medium to another, the path CHANGES!

Refraction What EXACTLY is light doing when it reaches a new medium? We don’t want you to think ALL of the light refracts. Some of the light REFLECTS off the boundary and some of the light REFRACTS through the boundary. Angle of incidence = Angle of Reflection Angle of Incidence > or < the Angle of refraction depending on the direction of the light

Refraction – Going from Air to Water The index of refraction, n, for air (vacumm) is equal to 1. The index of refraction for water is 1.33. If you are going from a LOW “n” to a HIGH “n”, your speed DECREASES and the angle BENDS TOWARDS the normal

Refraction – Going from Water into Air The index of refraction, n, for air (vacumm) is equal to 1. The index of refraction for water is 1.33. If you are going from a HIGH “n” to a LOW “n”, your speed INCREASES and the angle BENDS AWAY the normal Note: If the angles are EQUAL, then the “n” must be equal for each. The ray will pass straight through.

Refraction – Snell’s Law A scientist by the name of Snell discovered that the ratios of the index’s and the ratio of the sine of the angles are the same value!

Example The refractive index of the gemstone, Aquamarine, is 1.577. Suppose a ray of light strikes a horizontal boundary of the gemstone with an angle of incidence of 23 degrees from air. Calculate the SPEED of light in Aquamarine 1.90 x 108 m/s Calculate the angle of refraction within Aquamarine 14.34 degrees

Total Internal Reflection There is a special type of refraction that can occur ONLY when traveling from a HIGH “n” medium to a LOW “n” medium. Suppose we are traveling FROM water and going into air. Should the ANGLE OF INCIDENCE get TOO LARGE, the angle of refraction will EQUAL 90 DEGREES. We call this special angle of incidence the CRITICAL ANGLE, qc, for that material (water in this case)

Total Internal Reflection If we EXCEED the critical angle, for that material, the ray will reflect INTERNALLY within the material. We call this idea TOTAL INTERNAL REFLECTION. In this figure, the angle of incidence EXCEEDS the critical angle for water and the ray reflects according to the law of reflection at the boundary.

The Critical Angle So the question is , how can you calculate the critical angle? Remember, it is when the refracted ray is equal to 90 degrees qc

Example Suppose a light ray is traveling in heavy flint glass( n = 1.65) and once it strikes the boundary, enters air. Calculate the critical angle for flint glass. 37.3 degrees

Lenses – An application of refraction There are 2 basic types of lenses A converging lens (Convex) takes light rays and bring them to a point. A diverging lens (concave) takes light rays and spreads them outward.

Converging (Convex) Lens Much like a mirror, lenses also take light rays from infinity and converge them to a specific point also called the FOCAL POINT, f. The difference, however, is that a lens does not have a center of curvature, C, but rather has a focal point on EACH side of the lens.

Applications of Converging Lenses Obviously, converging lenses play an important role in our lives as our eyes are these types of lenses. Often times we need additional corrective lenses to fix our vision. In figure A, we see an eye which converges what we see on the retina. In figure B, we see an eye which converges too LATE. The eye itself is often too short and results in the person being far sighted. In figure C, we see an eye which converges too SOON. The eye itself is often too long and results in the person being near sighted In the later 2 cases, a convex or concave lens is necessary to ensure the image is on the retina.

Applications of Converging Lenses A camera uses a lens to focus an image on photographic film.

Ray Diagrams The rules for ray diagrams are the SAME for lenses as they were for mirrors except you go THROUGH the lens after refraction and instead of going through, C (center of curvature) you go through the actual center of the lens. f f Rule #1: Draw a ray, starting from the top of the object, parallel to the principal axis, then through “f” after refraction. Rule #2: Draw a ray, starting from the top of the object, through “f”, then parallel to the principal axis, after refraction. Rule #3: Draw a ray through the center of the lens.

Ray Diagrams As before, you draw the image down to the intersection as shown. f f Since this image could be projected on to a screen it is a REAL IMAGE and real images ALWAYS are found on the OPPOSITE side of the lens from the object. Likewise, virtual images would appear on the SAME SIDE as the object. The characteristics in this case are still inverted and reduced.

Lenses – The Mirror/Lens Equation To CALCULATE the image’s position and characteristics you use the same equations you used for mirrors. An object is placed 35 cm in front of a converging lens with focal length of 20 cm. Calculate the image’s position relative to the lens as well as the image’s characteristics. This image is REAL (since the object distance is positive) and on the OTHER side of the lens. The image is INVERTED and ENLARGED. 46.7 cm -1.33x