Atoms: The Building Blocks of Matter.

Slides:



Advertisements
Similar presentations
Atomic Structure Image courtesy of
Advertisements

Atomic Structure Modern Atomic Theory  All matter is composed of atoms  Atoms cannot be subdivided, created, or destroyed in ordinary.
Atomic Structure Image courtesy of
UNIT 1 Significant figures Uncertainty in measurement Percent error Separation Techniques for Mixtures (Lab activities once I open the Flinn boxes!)
 All matter is composed of atoms  Atoms cannot be subdivided, created, or destroyed in ordinary chemical reactions. However, these changes CAN occur.
IB Chemistry 1: Topic 2 Atomic Structure: atomic particles, atomic number, mass # , isotopes and atomic mass.
Atomic Structure.
Chapter 4 “Atomic Structure”
STD 1: Atomic Structure.
Unit 3 Language of Chemistry Part 1 Zumdahl: Chapter 4 Holt: Chapter 3.
Unit 1 – Atomic Structure
Chapter 4 Atomic Theory.
Chemistry Chapter 3 Atoms: The Building Blocks of Matter.
Chapter #3 Atoms: The Building Blocks of Matter Chapter #3 ATOMS:
Chemistry Chapter 3 Atoms: The Building Blocks of Matter.
Chemistry Chapter 1 Atoms: The Building Blocks of Matter.
Chemistry Atoms: The Building Blocks of Matter Dalton’s Atomic Theory (1808)  Atoms cannot be subdivided, created, or destroyed  Atoms of different.
Unit 1 – Atomic Structure Bravo – 15,000 kilotons.
Unit 1 – Atomic Structure Bravo – 15,000 kilotons.
Unit 1 – Atomic Structure Bravo – 15,000 kilotons.
Atomic Theory 15,000 kilotons.  Dismissed idea of the atom. Early Greeks Two schools of thought:  Matter is made of indestructible particles called.
Unit 1 – Atomic Structure Bravo – 15,000 kilotons.
Atomic Structure Modern Atomic Theory  All matter is composed of atoms  Atoms cannot be subdivided, created, or destroyed in ordinary.
Unit 3 – Atomic Structure Bravo – 15,000 kilotons.
BELLRINGER 10/2/14 What are the three particles that make up the atom?
ATOMS: The Building Blocks of Matter Objectives 1.Law of conservation of mass 2.Law of definite proportions 3.Law of multiple proportions 4.Dalton’s Atomic.
Unit 1 – Atomic Structure Bravo – 15,000 kilotons.
Defining Atoms & Electrons in Atoms Democritus ( BC) Originated idea of the atom.
Atomic Structure Section 4-1 Greek Philosophers (cont.) Many ancient scholars believed matter was composed of such things as earth,
Atoms: The Building Blocks of Matter Chapter 4 Ancient Atomic Theory Ancient Atomic Theory Modern Atomic Theory P.24 Warm up: Has our view of atoms changed.
Chapter 4 “Atomic Structure”. Section 4.1 Defining the Atom The Greek philosopher Democritus (460 B.C. – 370 B.C.) was among the first to suggest the.
Chapter 4 “Atomic Structure” Pre-AP Chemistry Charles Page High School Stephen L. Cotton.
1 Modern Chemistry Chapter 3 Atoms: the building block of matter.
Chapter 4 “Atomic Structure”. Section 4.1 Defining the Atom OBJECTIVES: OBJECTIVES: Describe Democritus’s ideas about atoms. Describe Democritus’s ideas.
Atomic Structure Chemistry. Defining the Atom The Greek philosopher Democritus (460 B.C. – 370 B.C.) was among first to suggest the existence of atoms.
Atomic Structure- Ch 4. Daltons Atomic Theory 1. All elements are composed of tiny indivisible particles called atoms. 2. Atoms of the same element are.
Chemistry Chapter 3 Unit 4
Atomic Structure
Atomic structure chp 3 sec 2
Atoms: The Building Blocks of Matter
Chapter #3 Atoms: The Building Blocks of Matter Chapter 3.1 & 3.3
“Atomic Structure” Pre-AP Chemistry.
Atomic Structure.
Unit 1 – Atomic Structure
Unit 3 – Atomic Structure
Chemistry Chapter 4 Atoms: The Building Blocks of Matter.
Ch. 4: Introduction to Atoms
Chapter 4 The Structure of the Atom
Chapter 4 “Atomic Structure”
Atoms: The Building Blocks of Matter
Atomic Structure
Atomic Structure
Atomic Structure and Periodicity
Chapter 4 “Atomic Structure”
Atomic Structure
Pre-AP Chemistry Atoms: The Building Blocks of Matter.
Chapter #3 Atoms: The Building Blocks of Matter Chapter 3 ATOMS:
4-1 Early Ideas of the Atom
Atomic Structure
Atomic Structure Ch. 3.
Chemistry Chapter 3 Atoms: The Building Blocks of Matter.
Atomic history.
Chapter #3 Atoms: The Building Blocks of Matter Chapter 3A ATOMS:
Unit 1 – Atomic Structure
Chapter 4 Atomic Structure and Theory
Unit 1 – Atomic Structure
Chapter 4 “Atomic Structure” Charles Page High School
Atomic Structure N5.
Atomic Structure N5.
Presentation transcript:

Atoms: The Building Blocks of Matter

Law of Conservation of Mass Mass is neither created nor destroyed during chemical or physical reactions. Antoine Lavoisier Total mass of reactants = Total mass of products

Dalton’s Atomic Theory (1808) All matter is composed of extremely small particles called atoms Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass, and other properties John Dalton Atoms cannot be subdivided Atoms of different elements combine in simple whole-number ratios to form chemical compounds In chemical reactions, atoms are combined, separated, or rearranged

Modern Atomic Theory Several changes have been made Dalton said: Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass, and other properties Modern theory states: Atoms of an element have a characteristic average mass which is unique to that element.

Isotopes Elements occur in nature as mixtures of isotopes. Isotopes are atoms of the same element that differ in the number of neutrons

Composition of the nucleus Atomic Masses Atomic mass is the average of all the naturally isotopes of that element. Carbon = 12.011 Isotope Symbol Composition of the nucleus % in nature Carbon-12 12C 6 protons 6 neutrons 98.89% Carbon-13 13C 7 neutrons 1.11% Carbon-14 14C 8 neutrons <0.01%

Modern Atomic Theory #2 Dalton said: Atoms cannot be subdivided, created, or destroyed Modern theory states: Atoms cannot be subdivided, created, or destroyed in ordinary chemical reactions. However, these changes CAN occur in nuclear reactions!

Discovery of the Electron In 1897, J.J. Thomson used a cathode ray tube to deduce the presence of a negatively charged particle. Cathode ray tubes pass electricity through a gas that is contained at a very low pressure.

Some Modern Cathode Ray Tubes

Thomson’s Atomic Model Thomson believed that the electrons were like plums embedded in a positively charged “pudding,” thus it was called the “plum pudding” model.

Mass of the Electron 1909 – Robert Millikan determines the mass of the electron. The oil drop apparatus Mass of the electron is 9.109 x 10-31 kg

Conclusions Cathode rays have identical properties regardless of the element used to produce them. Atoms are neutral, so there must be positive particles in the atom to balance the negative charge of the electrons Electrons have so little mass that atoms must contain other particles that account for most of the mass

Rutherford’s Gold Foil Experiment Alpha particles are helium nuclei Particles were fired at a thin sheet of gold foil Particle hits on the detecting screen (film) are recorded

Try it Yourself! In the following pictures, there is a target hidden by a cloud. To figure out the shape of the target, we shot some beams into the cloud and recorded where the beams came out. Can you figure out the shape of the target?

The Answers Target #1 Target #2

Rutherford’s Findings Most of the particles passed right through A few particles were deflected VERY FEW were greatly deflected Conclusions: The nucleus is small The nucleus is dense The nucleus is positively charged

Atomic Particles Particle Charge Mass (kg) Location Electron -1 9.109 x 10-31 Electron cloud Proton +1 1.673 x 10-27 Nucleus Neutron 1.675 x 10-27

The Atomic Scale Most of the mass of the atom is in the nucleus (protons and neutrons) Electrons are found outside of the nucleus (the electron cloud) Most of the volume of the atom is empty space “q” is a particle called a “quark”

The Quark… Oops…wrong Quark!

Neutrons are made of one “up” quark and two “down” quarks. About Quarks… Protons and neutrons are NOT fundamental particles. Protons are made of two “up” quarks and one “down” quark. Neutrons are made of one “up” quark and two “down” quarks. Quarks are held together by “gluons”

Atomic Number Atomic number (Z) of an element is the number of protons in the nucleus of each atom of that element. Element # of protons Atomic # (Z) Carbon 6 Phosphorus 15 Gold 79

Isotopes…Again (must be on the test) Isotopes are atoms of the same element having different masses due to varying numbers of neutrons.

Isotope Protons Electrons Neutrons (protium) Hydrogen–1 1 Hydrogen-2 (deuterium) Hydrogen-3 (tritium) 2

Mass Number Mass # = p+ + n0 Nuclide p+ n0 e- Mass # Oxygen - 10 - 33 42 - 31 15 18 8 8 18 Arsenic 75 33 75 Phosphorus 16 15 31 Mass number (atomic mass) is the number of protons and neutrons in the nucleus of an isotope.

There are exactly 12 grams of carbon-12 in one mole of carbon-12. The Mole 1 dozen = 12 1 gross = 144 1 ream = 500 1 mole = 6.02 x 1023 There are exactly 12 grams of carbon-12 in one mole of carbon-12.

I didn’t discover it. Its just named after me! Avogadro’s Number 6.02 x 1023 is called “Avogadro’s Number” in honor of the Italian chemist Amadeo Avogadro (1776-1855). I didn’t discover it. Its just named after me! Amadeo Avogadro

Sooooooooo 1 mole of an element/compound = Sooooooooo 1 mole of an element/compound = 6.02 x 1023 molecules of that element/compound = Atomic mass of that element/compound.

Calculations with Moles: Converting moles to grams How many grams of lithium are in 3.50 moles of lithium? 3.50 mol Li 6.94 g Li = g Li 45.1 1 mol Li

Calculations with Moles: Converting grams to moles How many moles of lithium are in 18.2 grams of lithium? 18.2 g Li 1 mol Li = mol Li 2.62 6.94 g Li

Calculations with Moles: Using Avogadro’s Number How many atoms of lithium are in 3.50 moles of lithium? 3.50 mol Li 6.022 x 1023 atoms Li = atoms Li 2.11 x 1024 1 mol Li

Calculations with Moles: Using Avogadro’s Number How many atoms of lithium are in 18.2 g of lithium? 18.2 g Li 1 mol Li 6.022 x 1023 atoms Li 6.94 g Li 1 mol Li (18.2)(6.022 x 1023)/6.94 = atoms Li 1.58 x 1024