Based on T. Qiu, Reconstruction of a Nonminimal Coupling Theory with Scale-invariant Power Spectrum, JCAP 1206 (2012) 041 T. Qiu, Reconstruction of f(R)

Slides:



Advertisements
Similar presentations
Solving Absolute Value Equations Solving Absolute Value Equations
Advertisements

Benasque 2012 Luca Amendola University of Heidelberg in collaboration with Martin Kunz, Mariele Motta, Ippocratis Saltas, Ignacy Sawicki Horndeski Lagrangian:
Gradient expansion approach to multi-field inflation Dept. of Physics, Waseda University Yuichi Takamizu 29 th JGRG21 Collaborators: S.Mukohyama.
Beyond δN-formalism for a single scalar field Resceu, University of Tokyo Yuichi Takamizu 27th Collaborator: Shinji Mukohyama (IPMU,U.
GI PERTURBATIONS, UNITARITY AND FRAME INDEPENDENCE IN HIGGS INFLATION ˚ 1˚ Tomislav Prokopec, ITP Utrecht University T. Prokopec and J. Weenink, e-Print:
Yi-Peng Wu Department of Physics, National Tsing Hua University May Chongquing 2012 Cross-Strait Meeting on Particle Physics and Cosmology Collaborate.
P ROBING SIGNATURES OF MODIFIED GRAVITY MODELS OF DARK ENERGY Shinji Tsujikawa (Tokyo University of Science)
Temporal enhancement of super-horizon scale curvature perturbations from decays of two curvatons and its cosmological implications. Teruaki Suyama (Research.
Observed Features of the Universe Universe is homogeneous and isotropic on lengths > 100 Mpc Universe expanding uniformly ordinary matter is more abundant.
Phenomenological Classification of Inflationary Potentials Katie Mack (Princeton University) with George Efstathiou (Cambridge University) Efstathiou &
The role of conformal-coupled scalar field in cosmology   R. Avakyan   G. Harutyunyan   E. Chubaryan   A. Piloyan Yerevan State University.
An Introduction to Inflation and Bouncing Cosmology Taotao Qiu Chung Yuan Christian University
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
Spherical Collapse in Chameleon Models Rogerio Rosenfeld Rogerio Rosenfeld Instituto de Física Teórica Instituto de Física Teórica UNESP UNESP 2nd Bethe.
José Beltrán and A. L. Maroto Dpto. Física teórica I, Universidad Complutense de Madrid XXXI Reunión Bienal de Física Granada, 11 de Septiembre de 2007.
Physical Constraints on Gauss-Bonnet Dark Energy Cosmologies Ishwaree Neupane University of Canterbury, NZ University of Canterbury, NZ DARK 2007, Sydney.
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, MK, JHEP 07 (2008) Dimopoulos, MK, Lyth, Rodriguez,
朴 云 松 朴 云 松 中国科学院研究生院 中国科学院研究生院 How to Build an Alternative to Inflation.
New Inflation Amy Bender 05/03/2006. Inflation Basics Perturbations from quantum fluctuations of scalar field Fluctuations are: –Gaussian –Scale Invariant.
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, Karčiauskas, JHEP 07, 119 (2008) Dimopoulos,
Primordial density perturbations from the vector fields Mindaugas Karčiauskas in collaboration with Konstantinos Dimopoulos Jacques M. Wagstaff Mindaugas.
Higgs inflation in minimal supersymmetric SU(5) GUT Nobuchika Okada University of Alabama, Tuscaloosa, AL In collaboration with Masato Arai & Shinsuke.
Non-Gaussianities of Single Field Inflation with Non-minimal Coupling Taotao Qiu Based on paper: arXiv: [Hep-th] (collaborated with.
Based on Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016 Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016.
THE GRACEFUL EXIT FROM INFLATION AND DARK ENERGY By Tomislav Prokopec Publications: Tomas Janssen and T. Prokopec, arXiv: ; Tomas Janssen, Shun-Pei.
1 f(R) Gravity and its relation to the interaction between DE and DM Bin Wang Shanghai Jiao Tong University.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
Construction of gauge-invariant variables for linear-order metric perturbations on general background spacetime Kouji Nakamura (NAOJ) References : K.N.
Effective field theory approach to modified gravity with applications to inflation and dark energy Shinji Tsujikawa Hot Topics in General Relativity And.
Self – accelerating universe from nonlinear massive gravity Chunshan Lin Kavli
Emergent Universe Scenario
BRANEWORLD COSMOLOGICAL PERTURBATIONS
Why there are many alternatives to inflation ? Why there are many alternatives to inflation ? 朴云松 朴云松 Graduated University of CAS Graduated University.
1 Circular Polarization of Gravitational Waves in String Cosmology MIAMI, 200 7 Jiro Soda Kyoto University work with Masaki Satoh & Sugumi Kanno.
Quintom Bounce with a Galileon Model Chung-Yuan Christian University, Taiwan & Institute of High Energy Physics, Beijing Based on Collaborated.
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
Yugo Abe (Shinshu University) July 10, 2015 In collaboration with T. Inami (NTU), Y. Kawamura (Shinshu U), Y. Koyama (NCTS) YA, T. Inami,
Quintom Cosmology Tao-Tao Qiu & Yi-Fu Cai, IHEP (邱涛涛、蔡一夫, 中科院高能所) ( “ 精灵 ” 宇宙学)
The false vacuum bubble : - formation and evolution - in collaboration with Bum-Hoon Lee, Chul H. Lee, Siyong Nam, and Chanyong Park Based on PRD74,
Tunneling cosmological state and origin of SM Higgs inflation A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow based on works with A.Yu.Kamenshchik.
Dark Energy in f(R) Gravity Nikodem J. Popławski Indiana University 16 th Midwest Relativity Meeting 18 XI MMVI.
Renormalized stress tensor for trans-Planckian cosmology Francisco Diego Mazzitelli Universidad de Buenos Aires Argentina.
Outline of the Lectures Lecture 1: The Einstein Equivalence Principle Lecture 2: Post-Newtonian Limit of GR Lecture 3: The Parametrized Post-Newtonian.
Inflationary Theory of Primordial Cosmological Perturbation Project for General Relativity (Instructor: Prof.Whiting) Sohyun Park.
Theoretical Aspects of Dark Energy Models Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences CCAST, July 4, 2005.
Unesco July 2005Francis Bernardeau SPhT Saclay1 Models of inflation with primordial non-Gaussianities Francis Bernardeau SPhT Saclay Collaboration with.
Inflation scenario via the Standard Model Higgs boson and LHC A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow A.Yu.Kamenshchik Landau.
A Galileon Bounce Model Based on JCAP 1110:036,2011 (arXiv: ) Collaborated with J. Evslin, Y. F. Cai, M. Z. Li, X. M. Zhang See also D. Easson.
Dark Energy in the Early Universe Joel Weller arXiv:gr-qc/
Quantum Noises and the Large Scale Structure Wo-Lung Lee Physics Department, National Taiwan Normal University Physics Department, National Taiwan Normal.
Inflation coupled to the GB correction Zong-Kuan Guo Hangzhou workshop on gravitation and cosmology Sep 4, 2014.
Primordial Perturbations from Dilaton-induced Gauge Fields Kiwoon Choi (COSMO 2015, Warsaw) based on KC, K-Y. Choi, H. Kim and C.S. Shin, arXiv:
Inflation in modified gravitational theories Shinji Tsujikawa Tokyo University of Science (TUS) with Antonio De Felice (TUS), Joseph Elliston, Reza Tavakol.
Fermionic Schwinger current in 4-d de Sitter spacetime Takahiro Hayashinaka (RESCEU, Univ. Tokyo) Work in preparation with : Tomohiro Fujita (Stanford),
Cosmology in Eddington- inspired Born-Infeld gravity Hyeong-Chan Kim Korea National University of Transportation 19 Feb 2013 The Ocean Suites Jeju, Asia.
On the Lagrangian theory of cosmological density perturbations Isolo di San Servolo, Venice Aug 30, 2007 V. Strokov Astro Space Center of the P.N. Lebedev.
University of Oslo & Caltech
Collapse of Small Scales Density Perturbations
Charged black holes in string-inspired gravity models
Recent status of dark energy and beyond
Inflation with a Gauss-Bonnet coupling
Notes on non-minimally derivative coupling
Why there are many alternatives to inflation ?
Quantum Spacetime and Cosmic Inflation
Shintaro Nakamura (Tokyo University of Science)
General, single field Inflation
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
Collaborator: Taifan Zheng Supervisor: Edna Cheung
Presentation transcript:

Based on T. Qiu, Reconstruction of a Nonminimal Coupling Theory with Scale-invariant Power Spectrum, JCAP 1206 (2012) 041 T. Qiu, Reconstruction of f(R) Theory with Scale-invariant Power Spectrum, arXiv: Taotao Qiu LeCosPA Center, National Taiwan University

In order to form structures of our universe that can be observed today. Power spectrum:With spectral index: Observationally, nearly scale-invariant power spectrum ( ) is favored by data! D. Larson et al. [WMAP collaboration], arXiv: [astro-ph.CO]. Variables for testing perturbations: Others: bispectrum, trispectrum, gravitational waves, etc. Why perturbations? 2

In GR+single scalar field, there are two ways to get scale-invariant power spectrum: De Sitter expansion with w=-1 (applied in inflation scenarios) Matter-like contraction with w=0 (applied in bouncing scenarios) Proof: see my paper JCAP 1206 (2012) 041 ( ) However, there are large possibility that GR might be modified! e.g. F(R), F(G), scalar-tensor theory, massive gravity,… Question: How can these theories generate scale- invariant power spectrum? 3

Focus: scalar tensor theory with lagrangian: Note:First nonminimal coupling model Brans-Dicke model Two approaches: Direct calculation from the original action: difficulty & complicated due to the coupling to gravity Making use of the conformal equivalence 4

Lagrangian: can be transformed to Einstein frame of through the transformation: 5 where so that

The perturbations in two frames obey the same equations, so the nonminimal coupling theory can generate scale-invariant power spectrum as long as its Einstein frame form can generate power spectrum (which is inflation or matter-like contraction). 6 Perturbations: Jordan frameEinstein frame Equation of motion for curvature perturbation The variables defined as: Equation of motion for tensor perturbation The variables defined as:

Assume the action of the Einstein frame of our model with the form: have inflationary solution as 7 where

By assuming Lagrangian: we can have: 8 Main result (I)

The numerical result: 9 Conclusions: 1) the universe expands when or while contracts when 2) some critical points: The value of f_I The value of w_J The physical meaning slow expansion/ contraction trivial inflation division of accelerated/ decelerated expansion

Lagrangian: whereandare constants. Examples: 1) 2) working as inflation working as slow- expansion 10 Assume After some manipulations, we get: Main result (II)

Assume the action in the Einstein frame of our model with the form: have the matter-like contractive solution as 11

Lagrangian: Following the same procedure, we have: 12 with Main result (I)

The numerical results: 13 The value of f_M The value of w_J The physical meaning slow expansion/ contraction trivial inflation division of accelerated/ decelerated expansion Conclusions: 1) the universe expands when or while contracts when 2) some critical points:

Lagrangian: 14 whereandare constants. Assume Examples: 1) 2) working as inflation working as slow-expansion/contraction depending on sign of After some manipulations, we get: with Main result (II)

15 Reconstructed from inflation:Reconstructed from matter-like contraction: in both cases: either contraction with w>-1/3 ( ) or expansion with w<-1/3 ( ) A condition for avoidance of conceptual problems such as horizon, etc is to have the universe expand with w -1/3 (including matter-like contraction) (proof omitted) Avoiding horizon problem!!!

Observations suggest scale-invariant power spectrum. In GR case: (generally) inflation or matter-like contraction. In Modified Gravity case: possibility could be enlarged. For general nonminimal coupling theory, we can construct models with scale-invariant power spectrum making use of conformal equivalence. PROPERTIES: PROPERTIES: The behavior of the universe is more free Models reconstructed from both inflation and matter-like contraction allow contracting and expanding phases, respectively. One can have more fruitful forms of field theory models. Models are constrainted to be free of theoretical problems (due to the conformal equivalence). 16

17