Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 1 of 47 Chapter 5 Applications of the Exponential and Natural Logarithm Functions.

Slides:



Advertisements
Similar presentations
§ 2.4 Curve Sketching (Conclusion).
Advertisements

§ 2.6 Further Optimization Problems.
Chapter Outline Exponential Growth and Decay Compound Interest
College Algebra & Trigonometry
Exponential Growth and Decay
Exponential Growth or Decay Function
§ 2.3 The First and Second Derivative Tests and Curve Sketching.
Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 1 of 62 Chapter 7 Functions of Several Variables.
§ 5.3 Applications of the Natural Logarithm Function to Economics.
§ 7.2 Partial Derivatives.
§ 4.4 The Natural Logarithm Function.
Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 1 of 115 § 1.4 Limits and the Derivative.
Chapter 2 Applications of the Derivative
§ 1.3 The Derivative.
Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 1 of 55 Chapter 4 The Exponential and Natural Logarithm Functions.
Chapter 1 Functions.
Chapter 3 Techniques of Differentiation
Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 1 of 115 § 1.2 The Slope of a Curve at a Point.
Chapter 6 The Definite Integral.  Antidifferentiation  Areas and Riemann Sums  Definite Integrals and the Fundamental Theorem  Areas in the xy-Plane.
§ 2.5 Optimization Problems.
Modeling with Exponential and Logarithmic Functions.
Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 1 of 115 § 1.8 The Derivative as a Rate of Change.
© 2010 Pearson Education Inc.Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 12e– Slide 1 of 39 Chapter 8 The Trigonometric Functions.
6.2 Growth and Decay Law of Exponential Growth and Decay C = initial value k = constant of proportionality if k > 0, exponential growth occurs if k < 0,
7 INVERSE FUNCTIONS. 7.5 Exponential Growth and Decay In this section, we will: Use differentiation to solve real-life problems involving exponentially.
§ 9.6 Exponential Growth and Decay; Modeling Data.
Copyright © 2007 Pearson Education, Inc. Slide 5-2 Chapter 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions 5.3.
© 2010 Pearson Education Inc.Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 12e– Slide 1 of 55 Chapter 4 The Exponential and Natural Logarithm.
Modeling with Exponential and Logarithmic Functions
INTRODUCTORY MATHEMATICAL ANALYSIS For Business, Economics, and the Life and Social Sciences  2011 Pearson Education, Inc. Chapter 4 Exponential and Logarithmic.
5. 6. Further Applications and Modeling with
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 8-6 Exponential and Logarithmic Functions, Applications, and Models.
Exponential Functions An exponential function is a function of the form the real constant a is called the base, and the independent variable x may assume.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Inverse, Exponential, and Logarithmic Functions Copyright © 2013, 2009, 2005 Pearson Education,
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 4 Exponential and Logarithmic Functions.
CHAPTER 5 SECTION 5.6 DIFFERENTIAL EQUATIONS: GROWTH AND DECAY
Section 6.4 Solving Logarithmic and Exponential Equations
INTRODUCTORY MATHEMATICAL ANALYSIS For Business, Economics, and the Life and Social Sciences  2007 Pearson Education Asia Chapter 4 Exponential and Logarithmic.
Section 7.4: Exponential Growth and Decay Practice HW from Stewart Textbook (not to hand in) p. 532 # 1-17 odd.
Section 4.2 Logarithms and Exponential Models. The half-life of a substance is the amount of time it takes for a decreasing exponential function to decay.
AP Calculus Ms. Battaglia. The strategy is to rewrite the equation so that each variable occurs on only one side of the equation. This strategy is called.
6 Differential Equations
Base e and Natural Logarithms
Differential Equations Objective: To solve a separable differential equation.
Differential Equations: Growth and Decay Calculus 5.6.
Section 4.5 Modeling with Exponential & Logarithmic Functions.
Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 1 of 47 § 5.2 Compound Interest.
Section 6 Chapter Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Exponential and Logarithmic Equations; Further Applications.
Why the Power Rule/Change of Base Rule
2 - 1 Section 2.1 Properties of Functions. Definition of a Function.
Background Knowledge Write the equation of the line with a slope of ½ that goes through the point (8, 17)
Any population of living creatures increases at a rate that is proportional to the number present (at least for a while). Other things that increase or.
A quantity that decreases exponentially is said to have exponential decay. The constant k has units of “inverse time”; if t is measured in days, then k.
Warm Up Dec. 19 Write and solve the differential equation that models the verbal statement. Evaluate the solution at the specified value. The rate of change.
Aim: Growth & Decay Course: Calculus Do Now: Aim: How do we solve differential equations dealing with Growth and Decay Find.
Chapter 5 Applications of the Exponential and Natural Logarithm Functions.
Chapter 5 Applications of Exponential and Natural Logarithm Functions.
6.4 Applications of Differential Equations. I. Exponential Growth and Decay A.) Law of Exponential Change - Any situation where a quantity (y) whose rate.
Exponential and Logarithmic Functions 4 Copyright © Cengage Learning. All rights reserved.
Copyright © 2004 Pearson Education, Inc. Chapter 4 Exponential and Logarithmic Functions.
MAHATMA GANDHI INSTITUTE OF TECHNICAL EDUCATION AND RESEARCH CENTRE, NAVSARI YEAR :
Exponential Growth and Decay Mr. Peltier. Exponential Growth and Decay dy/dt = ky If y is a differentiable function of t, such that y > 0 and dy/dt =
2 - 1 © 2012 Pearson Education, Inc.. All rights reserved. Chapter 2 Nonlinear Functions.
Chapter 4 Logarithm Functions
Differential Equations
Chapter 5: Inverse, Exponential, and Logarithmic Functions
Chapter 2 Nonlinear Functions.
Tutorial 5 Logarithm & Exponential Functions and Applications
Further Applications and Modeling with
Presentation transcript:

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 1 of 47 Chapter 5 Applications of the Exponential and Natural Logarithm Functions

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 2 of 47  Exponential Growth and Decay  Compound Interest  Applications of the Natural Logarithm Function to Economics  Further Exponential Models Chapter Outline

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 3 of 47 § 5.1 Exponential Growth and Decay

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 4 of 47  Exponential Growth  The Exponential Growth and Decay Model  Exponential Growth in Application  Exponential Decay  Exponential Decay in Application Section Outline

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 5 of 47 Exponential Growth DefinitionExample Exponential Growth: A quantity, such that, at every instant the rate of increase of the quantity is proportional to the amount of the quantity at that instant

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 6 of 47 Exponential Growth & Decay Model

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 7 of 47 Exponential Growth in ApplicationEXAMPLE SOLUTION (World’s Population) The world’s population was 5.51 billion on January 1, 1993 and 5.88 billion on January 1, Assume that at any time the population grows at a rate proportional to the population at that time. In what year will the world’s population reach 7 billion? Since the “oldest” information we’re given corresponds to 1993, that will serve as our initial time. Therefore the year 1993 will be the year t = 0 and the population at time t = 0 is 5.51 (measured in billions). Therefore, the year 1998 will be year t = 5 and the population at time t = 5 is 5.88 (measured in billions). Since the population grows at a rate proportional to the size of the population, we can use the exponential growth model P(t) = P 0 e kt to describe the population of the world. Since P 0 is the initial quantity, P 0 = Therefore, our formula becomes

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 8 of 47 Exponential Growth in Application Now we use the other given information (5.88 billion in 1998) to determine k. This is our function so far. CONTINUED When t = 5, the population is 5.88 billion people. Divide. Rewrite in logarithmic form. Solve for k. Therefore, our formula to model this situation is Now we can determine when the world’s population will be 7 billion.

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 9 of 47 Exponential Growth in ApplicationCONTINUED This the derived function. Therefore, the world’s population will be 7 billion people about years after our initial year, This would be the year = That is, around the year The graph is given below. Replace P(t) with 7. Divide. Rewrite in logarithmic form. Solve for t.

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 10 of 47 Exponential Growth in ApplicationCONTINUED

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 11 of 47 Exponential Decay DefinitionExample Exponential Decay: A quantity, such that, at every instant the rate of decrease of the quantity is proportional to the amount of the quantity at that instant

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 12 of 47 Exponential Decay in ApplicationEXAMPLE (Radioactive Decay) Radium-226 is used in cancer radiotherapy, as a neutron source for some research purposes, and as a constituent of luminescent paints. Let P(t) be the number of grams of radium-226 in a sample remaining after t years, and suppose that P(t) satisfies the differential equation (a) Find the formula for P(t). (b) What was the initial amount? (c) What is the decay constant? (d) Approximately how much of the radium will remain after 943 years? (e) How fast is the sample disintegrating when just one gram remains? Use the differential equation.

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 13 of 47 Exponential Decay in Application (a) Since the function y = Ce kt satisfies the differential equation y΄ = ky, the function P(t) = Ce kt = Ce t (where k = ). Since for the function y = Ce kt, C is always the initial quantity (at time t = 0), C = 12 (since P(0) = 12). Therefore, our function is CONTINUED (f) What is the weight of the sample when it is disintegrating at the rate of grams per year? (g) The radioactive material has a half-life of about 1612 years. How much will remain after 1612 years? 3224 years? SOLUTION

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 14 of 47 Exponential Decay in Application (c) Since our exponential decay function is, the decay constant, being the coefficient of t, is (b) We were given P(0) = 12. Therefore the initial amount is 12 grams. CONTINUED (d) To determine approximately how much of the radium will remain after 943 years, we will evaluate the function at t = 943. This is the decay function. Evaluate the function at t = 943. Simplify. Therefore, after 943 years, there will be approximately 8 grams remaining.

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 15 of 47 Exponential Decay in ApplicationCONTINUED This is the derivative function. (e) To determine how fast the sample is disintegrating when just one gram remains, we must first recognize that this is a situation concerning the rate of change of a quantity, namely the rate at which the radium is disintegrating. This of course involves the derivative function. This function was given to us and is. Now we will determine the value of the derivative function at P(t) = 1 (when one gram remains). Replace P(t) with 1. So, when there is just one gram remaining, the radium is disintegrating at a rate of grams/year. (f) To determine the weight of the sample when it is disintegrating at the rate of grams per year, we must determine P(t) when P΄(t) =

Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 11e – Slide 16 of 47 Exponential Decay in ApplicationCONTINUED This is the derivative function. Replace P΄(t) with Solve for P(t). So, the weight of the sample when it is disintegrating at the rate of grams per year, is 9.3 grams. (g) To determine how much of the radium will remain after 1612 years, that is one half-life, we will simply recognize that after one half-life, half of the original amount of radium will be disintegrated. That is, 12/2 = 6 grams will be disintegrated and therefore 6 grams will remain. After 3224 years, two half-lives, half of what was remaining at the end of the first 1612 years (6 grams) will remain. That is, 6/2 = 3 grams. These results can be verified using the formula for P(t).