IntraBeam Scattering Calculation

Slides:



Advertisements
Similar presentations
Damping ring K. Ohmi LC Layout Single tunnel Circumference 6.7 km Energy 5 GeV 2 km 35 km.
Advertisements

Halo calculations in ATF DR Dou Wang (IHEP), Philip Bambade (LAL), Kaoru Yokoya (KEK), Theo Demma (LAL), Jie Gao (IHEP) FJPPL-FKPPL Workshop on ATF2 Accelerator.
SuperB Damping Rings M. Biagini, LNF-INFN P. Raimondi, SLAC/INFN A. Wolski, Cockroft Institute, UK SuperB III Workshop, SLAC, June 2006.
SuperB and the ILC Damping Rings Andy Wolski University of Liverpool/Cockcroft Institute 27 April, 2006.
First approach to the SuperB Rings M. Biagini, LNF-INFN April 26th, 2006 UK SuperB Meeting, Daresbury.
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Intra-beam Scattering Study for Low Emittance of BAPS S.K.Tian(IHEP)
Y. Ohnishi / KEK KEKB-LER for ILC Damping Ring Study Simulation of low emittance lattice includes machine errors and optics corrections. Y. Ohnishi / KEK.
Frank Zimmermann, CLIC “Away Day” 28 March 2006  x * Limitations and Improvements Paths Damping Rings Maxim Korostelev, Frank Zimmermann.
Comparison between NLC, ILC and CLIC Damping Ring parameters May 8 th, 2007 CLIC Parameter working group Y. Papaphilippou.
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
Lattice design for IBS dominated beams August th, 2007 Yannis PAPAPHILIPPOU IBS ’07 – Intra Beam Scattering mini workshop, The Cockcroft Institute,
Permanent magnet wiggler based on NdFeB material. This wiggler type uses the same design principles as the wigglers which have been developed for PETRA.
M.E. Biagini, M. Boscolo, T. Demma (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC). Status of Multi-particle simulation of INFN.
DR 3.2 km Lattice Requirements Webex meeting 10 January 2011.
Comparison between simulations and measurements in the LHC with heavy ions T. Mertens, R. Bruce, J.M. Jowett, H. Damerau,F. Roncarolo.
Preliminary results on simulation of fast-ion instability at 3 km LBNL damping ring 21 April 2005 Pohang Accelerator Laboratory Eun-San Kim.
SuperB Lattice Studies M. Biagini LNF-INFN ILCDR07 Workshop, LNF-Frascati Mar. 5-7, 2007.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
Collective effects in EDM storage ring A.Sidorin, Electron cooling group, JINR, Dubna.
The SPS as a Damping Ring Test Facility for CLIC March 6 th, 2013 Yannis PAPAPHILIPPOU CERN CLIC Collaboration Working meeting.
PEP-X Ultra Low Emittance Storage Ring Design at SLAC Lattice Design and Optimization Min-Huey Wang SLAC National Accelerator Laboratory With contributions.
Electron cloud study for ILC damping ring at KEKB and CESR K. Ohmi (KEK) ILC damping ring workshop KEK, Dec , 2007.
Global Design Effort ILC Damping Rings: R&D Plan and Organisation in the Technical Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute,
Emittance reduction by a SC wiggler in the ATF-DR September 16 th, 2009 Yannis PAPAPHILIPPOU and Rogelio TOMAS ATF2 weekly meeting.
Damping Ring Specifications S. Guiducci ALCPG11, 20 March 2011.
Intra-Beam scattering studies for CLIC damping rings A. Vivoli* Thanks to : M. Martini, Y. Papaphilippou *
Parameter scan for the CLIC damping rings July 23rd, 2008 Y. Papaphilippou Thanks to H. Braun, M. Korostelev and D. Schulte.
T. Demma (INFN-LNF) In collaboration with: M. Boscolo (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC). Macroparticle simulation of IBS in SuperB.
IBS and Touschek studies for the ion beam at the SPS F. Antoniou, H. Bartosik, Y. Papaphilippou, T. Bohl.
IntraBeam Scattering Calculation T. Demma, S. Guiducci SuperB Workshop LAL, 17 February 09.
1 DR 10 Hz Repetition Rate S. Guiducci (LNF) AD&I webex, 23 June 2010.
Third ILC Damping Rings R&D Mini-Workshop KEK, Tsukuba, Japan December 2007 Choosing the Baseline Lattice for the Engineering Design Phase Andy Wolski.
Electron Cloud & IBS Update
Envelope tracking as a tool for low emittance ring design
ILC DR Lower Horizontal Emittance, preliminary study
Electron Cloud, IBS, and Fast Ion Update
Dynamic Aperture Studies with Acceleraticum
Primary estimation of CEPC beam dilution and beam halo
Recent Developments in Damping Rings and their Wigglers
First Look at Nonlinear Dynamics in the Electron Collider Ring
IntraBeam Scattering Calculation
Intra-Beam Scattering modeling for SuperB and CLIC
sx* Limitations and Improvements Paths
Update of Damping Ring parameters
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
SuperB General Meeting June , Perugia (Italy)
SuperB ARC Lattice Studies
ANKA Seminar Ultra-low emittance for the CLIC damping rings using super-conducting wigglers Yannis PAPAPHILIPPOU October 8th, 2007.
LHC (SSC) Byung Yunn CASA.
The Proposed Conversion of CESR to an ILC Damping Ring Test Facility
ILC 3.2 km DR design based on FODO lattice (DMC3)
ILC 3.2 km DR design based on FODO lattice (DMC3)
ICFA Mini-Workshop, IHEP, 2017
Damping Ring parameters for the new accelerating structure
Update of Lattice Design for CEPC Main Ring
Update of Lattice Design for CEPC Main Ring
Damping Ring parameters for the new accelerating structure
ANKA Seminar Ultra-low emittance for the CLIC damping rings using super-conducting wigglers Yannis PAPAPHILIPPOU October 8th, 2007.
Kicker specifications for Damping Rings
Damping Ring parameters with reduced bunch charge
Update on ERL Cooler Design Studies
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Evaluation of 1GHz vs 2GHz RF frequency in the damping rings
Beam-beam simulations
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

IntraBeam Scattering Calculation T. Demma, S. Guiducci SuperB General Meeting Perugia, 17 June 2009

Calculations procedure Evaluate equilibrium emittances ei and radiation damping times ti at low bunch charge Evaluate the IBS growth rates 1/Ti(ei) for the given emittances, averaged around the lattice, using K. Bane approximation (EPAC02) Calculate the "new equilibrium" emittance from: For the vertical emittance use* : where r varies from 0 (y generated from dispersion) to 1 (y generated from betatron coupling) Iterate from step 2 * K. Kubo, S.K. Mtingwa, A. Wolski, "Intrabeam Scattering Formulas for High Energy Beams," Phys. Rev. ST Accel. Beams 8, 081001 (2005)

Bane's approximation K. Bane, “A Simplified Model of Intrabeam Scattering,” Proceedings of EPAC 2002, Paris, France (2002)

Completely-Integrated Modified Piwinski formulae K. Kubo, S.K. Mtingwa, A. Wolski, "Intrabeam Scattering Formulas for High Energy Beams," Phys. Rev. ST Accel. Beams 8, 081001 (2005).

ILC Damping Ring OCS Parameters Energy (GeV) 5 Circumference (m) 6114 N particles/bunch 2x10-10 Damping time x (ms) 22 Emittance gex (nm) 5500 Emittance gey (nm) 20 Momentum compaction 1.6 x10-4 Energy spread 1.3x10-3 Bunch length (mm) 6.0 To check the code the IBS effect calculated for the ILC damping ring OCS lattice has been compared with the results for the configuration options A. Wolski, J. Gao, S. Guiducci eds., “Configuration Studies and Recommendations for the ILC Damping Rings”, LBNL–59449, February 2006 https://wiki.lepp.cornell.edu/ilc/pub/Public/DampingRings/ConfigStudy/DRConfigRecommend.pdf

Results for ILC damping ring configuration options x/x0 1.01 1.12 1.23 y/y0 1.06 p/p0 1.00 1.003 1.006 x(nm) 0.56 0.62 0.68 y (pm) 2.01 2.12 2.23 p 0.0013 l (mm) 6.0 6.1 A. Wolski

SuperB parameters (June 08) E[Gev] h[nm] v [pm] s [mm] p/p h/ s [ms] HER 7 1.6 4 5 5.8e-4 40/20 LER 2.8 8e-4

IBS momentum spread vs. number of particles/bunch p/p0= 1.05, @ N=5.5•1010 p/p0= 1.05, @ N=5.5•1010

IBS horizontal emittance vs.number of particles/bunch h/h0=1.14, @ N=5.52•1010 h/h0=1.11, @ N=5.52•1010

IBS vertical emittance vs. number of particles/bunch for r = 0, 0 v/v0 r 1.10 1.11 0.5 1.15 1 N=5.52•1010 v/v0 r 1.08 1.10 0.5 1.13 1

LER lattice - IBS emittance growth @ N=5 LER lattice - IBS emittance growth @ N=5.5e10 with and without wigglers No IBS With IBS Bwig (T) 0. 0.85 VRF (MV) 5.4 6.3 x,y (ms) 39.0 32.4 p (ms) 19.5 16.2 x/x0 1.15 1.18 y/y0 1.10 1.12 p/p0 1.06 x 2.7e-9 2.3e-9 3.1e-9 y 7.0e-12 6.3e-12 7.7e-12 l 5.0 4.7 5.3 p 8.1e-4 8.2e-4 8.6e-4 8.7e-4 12 wigglers wig = 0.4m Lwig = 2.45m Nominal values

LER lattice - IBS emittance growth for different wiggler fields Bwig (T) 0. 1.0 1.3 1.6 VRF (MV) 5.4 6.6 7.3 8.7 x,y (ms) 39.0 30.5 26.5 22.8 p (ms) 19.5 15.3 13.3 11.4 x/x0 1.15 1.18 y/y0 1.10 1.12 1.11 p/p0 1.06 1.04 1.03 x0 2.7e-9 2.1e-9 1.9e-9 1.7e-9 y0 7.0e-12 6.3e-12 p0 8.1e-4 8.4e-4 9.0e-4 9.9e-4 l0 5.0 4.7 4.8 x 3.1e-9 2.5e-9 2.3e-9 2.0e-9 y 7.7e-12 p 8.6e-4 8.9e-4 9.4e-4 1.0e-3 l 5.3 N=5.5e10

SuperB parameters LNF configuration E[Gev] h[nm] v [pm] s [mm] p/p h/ s [ms] HER 6.7 1.6 4 5 6.5e-4 30/15 LER 4.12 5.4e-4 40/20 For damping times 60/30 [ms] the IBS calculation procedure does not reach equilibrium (Ti(ei) > i)

IBS in SuperB HER (LNF configuration) h/h0=1.06 @ N=4.06•1010 p/ p0=1.02 v/v0 r 1.05 1.06 0.5 1.07 1

IBS in SuperB LER (LNF configuration) h/h0=1.20 @ N=4.06•1010 p/ p0=1.13 v/v0 r 1.20 1.25 0.5 1.28 1

Conclusions The effect of IBS on the transverse emittance is reasonably small for both rings It can be compensated by adding 12 low field wigglers to get the nominal transverse emittance at the expenses of an increased energy spread and RF voltage Another possibility to get the nominal emittance is to increase the phase advance in the arc cells An interesting study: develop a MonteCarlo code to study the beam size distribution in the presence of IBS

Insertion of Wigglers N = 5.5e-10, l = 5mm, y = 7pm Bw (T) Bw (T) Relative energy spread p and emittance x vs. wiggler field Bw Damping time x,y and RF voltage VRF vs. wiggler field Bw N = 5.5e-10, l = 5mm, y = 7pm

Emittance and sigmap vs. wiggler field with ( ) and without (---) IBS x Nominal value Emittance and sigmap vs. wiggler field with ( ) and without (---) IBS