Derivatives A Physics 100 Tutorial.

Slides:



Advertisements
Similar presentations
Differential calculus
Advertisements

Page 6 As we can see, the formula is really the same as the formula. So, Furthermore, if an equation of the tangent line at (a, f(a)) can be written as:
Introduction to Derivatives—The Concept of a Tangent Line

Section 2.3 – Product and Quotient Rules and Higher-Order Derivatives
Chapter 2: Motion Along a Straight Line
2.6 The Derivative By Dr. Julia Arnold
The Calculus of Parametric Equations
Motion in One Dimension
Graphical Analysis of Motion
The Basics of Physics with Calculus
Graphing Linear Equations and Functions
Week 10 Generalised functions, or distributions
Slopes and Areas Frequently we will want to know the slope of a curve at some point. Or an area under a curve. We calculate slope as the change in height.
Accelerated Motion Chapter 3.
The Derivative and the Tangent Line Problem
Higher Mathematics: Unit 1.3 Introduction to Differentiation
3 Copyright © Cengage Learning. All rights reserved. Applications of Differentiation.
Rate of change and tangent lines
Calculus 2.1 Introduction to Differentiation
Differentiation. The Derivative and the Tangent Line Problem.
Chapter 2. Concepts of Motion
Derivatives in physics. Why Do We Need Derivatives? In physics things are constantly changing. Specifically, what we’ll be interested with is how physical.
Derivatives in physics. Why Do We Need Derivatives? In physics things are constantly changing. Specifically, what we’ll be interested with is how physical.
Slopes and Areas Frequently we will want to know the slope of a curve at some point. Or an area under a curve. We calculate area under a curve as the sum.
Chapter 3 Derivatives. Can u imagine if, anything on that bridge wasn’t move?
Business Calculus More Derivative Applications.  2.6 Differentials We often use Δx to indicate a small change in x, and Δy for a small change in y. It.
Kinematics Chapters 2 & 3.
The Power Rule  If we are given a power function:  Then, we can find its derivative using the following shortcut rule, called the POWER RULE:
Kinematics with Calculus: dervitives
The derivative as the slope of the tangent line
Graphical Analysis of Motion.
Chapter 2 Preview Objectives One Dimensional Motion Displacement
Kinematics: Motion in One Dimension
Motion in One Dimension
Chapter 2 Table of Contents Section 1 Displacement and Velocity
One Dimensional Motion
Velocity Time Graphs. What do Position Time graphs show? They show how position changes with time. So far we have studied graphs that show uniform motion.
AP Calculus AB – Made Simple
Chapter Representing Motion 2.
Physics 521 Section 2.4 and Chapter 3.  Acceleration is the rate at which the velocity of an object changes.  When the velocity changes ( ) during some.
Hitting the Slopes An adventure on the bunny hill of linear equations! Start.
Representing Motion 2 In this chapter you will:
© Houghton Mifflin Harcourt Publishing Company The student is expected to: Chapter 2 Section 1 Displacement and Velocity TEKS 4A generate and interpret.
Relations Math 314 Time Frame Calculations Slope Point Slope Parameters Word Problems.
An Introduction to Factoring and Solving Polynomial Expressions Mr. Rowinski9 th Grade Algebra I Continue.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting.
Velocity and Speed. Mechanics Branch of physics that studies motion Two parts Kinematics – describes motion Dynamics – tells why motion occurs.
 In this packet we will look at:  The meaning of acceleration  How acceleration is related to velocity and time  2 distinct types acceleration  A.
Lecture 12 Average Rate of Change The Derivative.
3 Copyright © Cengage Learning. All rights reserved. Applications of Differentiation.
Differentiation.
Slide Copyright © 2009 Pearson Education, Inc. Slide Copyright © 2009 Pearson Education, Inc. Welcome to MM150 – Unit 4 Seminar Unit 4 Seminar.
Accelerated Motion Chapter 3.
READ PAGES Physics Homework. Terms used to describe Physical Quantities Scalar quantities are numbers without any direction Vector quantities that.
The Basics of Physics with Calculus AP Physics C.
Branches of Physics. Study of how things move without considering the cause of motion. This branch of physics only deals with describing how something.
Kinematics Graphical Analysis of Motion. Goal 2: Build an understanding of linear motion. Objectives – Be able to: 2.04 Using graphical and mathematical.
Derivatives A Physics 100 Tutorial. Why Do We Need Derivatives? In physics, and life too, things are constantly “changing.” Specifically, what we’ll be.
Section 1 Displacement and Velocity Chapter 2 One Dimensional Motion To simplify the concept of motion, we will first consider motion that takes place.
2-1 Displacement and Velocity
Derivatives in physics.
Integration in physics.
Compressed springs store energy.
2.1 The Derivative and the Tangent Line Problem
Derivatives A Physics 100 Tutorial.
Derivatives.
Presentation transcript:

Derivatives A Physics 100 Tutorial

Why Do We Need Derivatives? In physics, and life too, things are constantly “changing.” Specifically, what we’ll be interested with in the physics context is how physical quantities change. For example, how does an object’s velocity change over time, or how does the force acting on an object change over a distance traveled. Such changes are described mathematically by derivatives. A “derivative” is just a fancy name that describes how something is changing with respect to something else. What follows will be a brief summary and insight into this world of ever changing quantities called derivatives.

Getting Started Let’s start simple. Consider the function y(x) = 3 shown in the figure to the right. If you were asked “How does this function change with x?” or equivalently, “How does y change as a function of x?,” you would say, “It doesn’t change. It is a constant value of 3 everywhere.” And your response would be correct, but how would we describe your response mathematically? y(x) = 3 x1 x2

Mathematics of “Change” Well, we define the change in the function y(x) with respect to the variable x, Δy/Δx, to be In English, this equation will tell us how the function y(x) changes over the distance between x1 and x2. Since y always equals 3 in our previous example, then Therefore, the function y(x) does not change over the interval x1 and x2. This mathematics will be how we describe the change in any function with respect to a given variable. Understanding the symbols… The symbol “Δ,” called delta, represents the change in a variable. Translated, Δy reads: “The change in y,” which equals: “y final minus y initial” or mathematically: “Δy = yfinal – yinitial.”

Example of a Straight Line Now consider the function y(x) = 3x + 1 as drawn in the figure to the right. Again, how would y(x) change with x? Let’s look at the interval between x = 2 and x = 3: The slope of the line equals Δy/Δx Using our definition for the change in y(x) with respect to x from the previous slide (hit the left arrow key if you need to back to the previous slide), we get: y(x) = 3x + 1 Δy=3 Δx=1 If we look at this graphically in Figure 2, we see that it is just the slope of the line!!! If we look at any interval of x, we would find that y(x) would change by the same amount, 3, over that interval because this function is just a straight line! Try it and see!!! Δy/Δx = 3 The function y changes by 3 units between x=2 and x=3.

More than Straight Lines On the previous slide, you learned that the slope of a straight line gives you the change in the function y(x) over the change in x. That concept will become the building block for everything that follows. Now let us consider a more complicated function other than a straight line. Consider the graph to the right. How would you describe how the function y(x) changes at any given value of x? Well, from what you just learned, the change in the function y(x) with respect to x should be given by the slope of a straight line. But what is the straight line???

Graphs that Curve Let us just get started and choose a point X on the graph. The question to be answered is “How does y(x) change at the point X? Slope of the tangent line at point X gives the change in y(x) with respect to x.: Slope=Δy/Δx. To give the answer away, the change in y(x) with respect to x at point X is given by the slope of the tangent line at point X !!! X The question now is “How do we determine the slope of the tangent line at point X? Understanding the terminology… The word “tangent line” describes a line that intersects or touches a curve at only one point. At any given point on a smooth curve, there is only one unique tangent line and therefore there is only one value for the slope of that tangent line at that point.

Determining the Slope of the Tangent Line Because h is smaller, the point X+h is closer to the original point X than before. Therefore, the slope of this second line is closer in value to the slope of the tangent line than what the slope of the first line was. To determine the slope of the tangent line, let us draw a different line that intersects the curve at both point X and point X + h. X What is the slope of this line? From before, the slope of the line will be Δy/Δx: Δy=y(X+h)–y(X) X+h X+h Δx=(X+h)–X=h This line is still not the tangent line at point X, but we can make it look more like the tangent line if we make the h a smaller value: If you calculate the slope for this second line, it will have the same form as the above equation, except now h is a smaller value and therefore y(X+h) will be a different value.

So What is a Derivative Anyway? Tangent Line Now, if we keep making h smaller and smaller, then the line that passes through the points X and X+h will start looking more and more like the line tangent to the curve at point X. Eventually, as h goes to zero, then the line that goes through X and X+h will become the tangent line!!! X+h X+h X+h X h goes to zero! h gets even smaller h gets smaller Let animation run!!! So, let’s write this out in mathematics… Slope of tangent line = We give the symbol to represent the slope of the tangent line. This symbol, , is what we call the derivative of y with respect to x. Therefore, the term “derivative” just represents how the function y(x) instantaneously changes with respect to the variable x. As h goes to zero, Δy/Δx becomes dy/dx.

Recap So Far Let us recap what you have learned so far: The slope of a straight line tells you how the function y(x) changes as the variable x changes: The “derivative” of y(x) at point X is the slope of the tangent line to the curve of y(x) at point X. The derivative, dy/dx, is defined mathematically by the following equation: The derivative, dy/dx, is the instantaneous change of the function y(x). As h goes to zero, Δy/Δx becomes dy/dx.

Using the Definition for Derivatives Let us now apply our newly derived formula to calculate the derivative of y(x) = x2. Tangent line at x = 5 has a slope of 10. Therefore, the function y(x) has an instantaneous slope of 10 units at x=5. y = x2 And therefore, Let us use this result to determine the derivative at x = 5. Since the derivative of y(x)=x2 equals 2x, then the derivative at x = 5 is 2*5 = 10. Therefore, the slope of the tangent line that passes through x = 5 has a slope of 10!

Graphing the Derivative In our previous example, we used the definition for the derivative to find the derivative of the function y = x2. When we did this, we found the derivative to be a function itself: dy/dx = 2x. This is just a straight line as plotted to the bottom right. y = x2 Let us see how the two graphs are related. You know that the derivative of a function is just the slope of that function. For example, look at the graph of y = x2, for negative values of x, the slope of the tangent line should be negative. Looking at the graph of dy/dx, when x is negative, dy/dx is also negative! The slope of the tangent line at x = -4 is -8. The slope of the tangent line at x = -9 is -18. The slope of the tangent line at x = 0 is 0. dy/dx = 2x -8 -18 When the slope of the tangent line equals zero, then the value of the derivative will equal zero!

Another Example “Repetition is good for the soul” as one teacher used to say, therefore, let us now do another example. Consider the formula y =4x3-15x2+20. This function is graphed to the right. Calculating the derivative, we find: y=4x3–15x2+20 Definition of derivative Substituted in the expression for y(x) Terms that survived after some terms canceled Divided each term by h These terms survived after h went to zero

Example Continued y=4x3–15x2+20 We have found that the derivative of y(x) = 4x3–15x2+20 to be: dy/dx = 12x2-30x. The graph of the original function is plotted in the top right while the graph of its derivative is plotted in the bottom right. The slope of the tangent lines should be zero at these points. Between x = 0 and x = 2.5, y(x) should have a negative slope. Let us compare the two graphs and some of their features: In this region, dy/dx should be positive. The original function y(x) in the region between x = -2 and x = 0 should have a positive slope. Indeed, between x=0 and x=2.5, dy/dx is negative in value. Indeed, dy/dx has positive values between x=-2 and x=0. Indeed, at x = 0 and x = 2.5, dy/dx equals zero. dy/dx = 12x2-30x At x = 0 and at x = 2.5, y(x) has critical points (points where the slope of the tangent line equals zero) and therefore its derivative should equal zero at those points. Between x = 0 and 2.5, y(x) is decreasing in value which implies that its derivative is negative in this region.

The Shortcut… You have seen so far two examples on calculating derivatives and their graphical representation and meaning. Certainly, the definition for the derivative can be used each time when one needs to be determined, but there exists a shortcut when it comes to functions of the form: y(x) = Axn, where “A” is just a numerical constant and “n” is an integer, positive or negative. Plugging this expression into the definition for the derivative, you will find that: dy/dx = nAxn-1 Using this shortcut to calculate the derivative of y(x) = x2, we get: dy/dx = 2*x2-1 = 2x. This is exactly what we got when we used the definition of the derivative several slides ago. In our second example, we found that the derivative of y =4x3-15x2+20 to be: dy/dx = 12x2 – 30x Does this shortcut work here? The answer is YES!!!

Some Simple Rules of Differentiation The subject of derivatives is a huge branch of mathematics in of itself and cannot possibly be contained here in this one tutorial. Hopefully, though, you now have some knowledge and appreciation for what derivatives are. The following are commonly known formulas for derivatives. What are these symbols? “f” and “g” are functions of x: f(x) and g(x). “c” represents a constant numerical value and therefore is not a function of x. “n” represents an integer number, positive or negative. f’ is shorthand for df/dx. Likewise, g’ is shorthand for dg/dx.

Problems to Solve Use the knowledge you just learned to try to solve the following questions. If you need assistance, feel free to ask any of the Physics 100 instructors. 3) Based upon the graph shown, where should the derivative of this function be positive, negative, and zero?

Answers to Problems 3) The derivative is: a) negative between -3 and -2, 0 and 2, and between 3 and 4 b) positive between -2 and 0, and between 2 and 3 c) zero at points -2, 0, 2, and 3.